Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC2_mC24_12_ah_cg_ij-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/JWKX
or https://aflow.org/p/ABC2_mC24_12_ah_cg_ij-001
or PDF Version

Predicted ζ-LiAlO$_{2}$ Structure: ABC2_mC24_12_ah_cg_ij-001

Picture of Structure; Click for Big Picture
Prototype AlLiO$_{2}$
AFLOW prototype label ABC2_mC24_12_ah_cg_ij-001
ICSD none
Pearson symbol mC24
Space group number 12
Space group symbol $C2/m$
AFLOW prototype command aflow --proto=ABC2_mC24_12_ah_cg_ij-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}$

  • LiAlO$_{2}$ exists in many different forms. We describe them using the notation of (Liu, 2018):
    • $\alpha$, synthesized from Al$_{2}$O$_{3}$ and Li$_{2}$CO$_{3}$ at 600°C (Marezio, 1966) forms in the Caswellsilverite $F5_{1}$ structure, space group $R\overline{3}m$ #166.
    • $\beta$ is the low temperature structure (Thery, 1961) forming in the LiGaO$_{2}$ structure, space group $Pna2_{1}$ #33.
    • $\beta'$ is a high-pressure monoclinic phase formed at 1.8 GPa and 370°C, but there is not enough information provided to determine either the space group or occupied Wyckoff positions (Chang, 1968).
    • $\gamma$ is the standard phase under ambient conditions. It is tetragonal (Marezio, 1965), space group $P4_{1}2_{1}2$ #92.
    • $\delta$ is formed at high pressures (9 GPa) under shock compression and takes the $\gamma$–LiFeO$_{2}$ structure.
    • $\epsilon$, formed from Al$_{2}$O$_{3}$ and LiH at 500°C, (Debray, 1960) is a cubic phase (space group $I4_{1}32$ #214) with 48 formula units in a cube 12.65Å on a side, but the atomic positions were not determined.
    • $\zeta$ (this structure) is a predicted high-pressure monoclinic structure (Liu, 2018), (space group $C2/m$ #12). It is apparently not related to the $\beta'$ phase.
  • The $\alpha$, $\beta'$ and $\delta$ phases are metastable under ambient conditions, but transform to $\gamma$–LiAlO$_{2}$ upon heating. (Liu, 2008)
  • Data for $\zeta$–LiAlO$_{2}$ was taken from the calculations of (Liu, 2018) at 40 GPa.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (2c) Li I
$\mathbf{B_{3}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ = $b y_{3} \,\mathbf{\hat{y}}$ (4g) Li II
$\mathbf{B_{4}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ = $- b y_{3} \,\mathbf{\hat{y}}$ (4g) Li II
$\mathbf{B_{5}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (4h) Al II
$\mathbf{B_{6}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ (4h) Al II
$\mathbf{B_{7}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O I
$\mathbf{B_{8}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4i) O I
$\mathbf{B_{9}}$ = $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) O II
$\mathbf{B_{10}}$ = $- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) O II
$\mathbf{B_{11}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) O II
$\mathbf{B_{12}}$ = $\left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8j) O II

References

  • G. Liu and H. Liu, First principles study of LiAlO$_{2}$: new dense monoclinic phase under high pressure, J. Phys.: Condens. Matter 30, 115401 (2018), doi:10.1088/1361-648X/aaad23.
  • L. Lei, D. He, Y. Zou, W. Zhang, Z. Wang, M. Jiang, and M. Du, J. Solid State Chem.}, Phase transitions of LiAlO$_{2$ at high pressure and high temperature 181, 1810–1815 (2008), doi:10.1016/j.jssc.2008.04.006.
  • M. Marezio, The crystal structure and anomalous dispersion of γ-LiAlO$_{2}$, Acta Cryst. 19, 396–400 (1965), doi:10.1107/S0365110X65003511.
  • J. Théry, A.-M. Lejus, D. Briançon, and R. Collongues, Sur la structure et les propriétés des aluminates alcalins, Bull. Soc. chim. Fr. pp. 973–975 (1961).
  • L. Debray and A. Hardy, Contribution à l'étude structurale des aluminates de lithium, C. R. Hebd. Séances Acad. Sci. 251, 725–726 (1960).

Prototype Generator

aflow --proto=ABC2_mC24_12_ah_cg_ij --params=$a,b/a,c/a,\beta,y_{3},y_{4},x_{5},z_{5},x_{6},y_{6},z_{6}$

Species:

Running:

Output: