AFLOW Prototype: A2BC2D8E2_tI30_139_e_a_e_2eg_e-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/BZRA
or
https://aflow.org/p/A2BC2D8E2_tI30_139_e_a_e_2eg_e-001
or
PDF Version
Prototype | Ba$_{2}$CaCu$_{2}$O$_{8}$Sr$_{2}$ |
AFLOW prototype label | A2BC2D8E2_tI30_139_e_a_e_2eg_e-001 |
ICSD | 68188 |
Pearson symbol | tI30 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=A2BC2D8E2_tI30_139_e_a_e_2eg_e-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Ca I |
$\mathbf{B_{2}}$ | = | $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (4e) | Bi I |
$\mathbf{B_{3}}$ | = | $- z_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}$ | = | $- c z_{2} \,\mathbf{\hat{z}}$ | (4e) | Bi I |
$\mathbf{B_{4}}$ | = | $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (4e) | Cu I |
$\mathbf{B_{5}}$ | = | $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ | = | $- c z_{3} \,\mathbf{\hat{z}}$ | (4e) | Cu I |
$\mathbf{B_{6}}$ | = | $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (4e) | O I |
$\mathbf{B_{7}}$ | = | $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (4e) | O I |
$\mathbf{B_{8}}$ | = | $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ | = | $c z_{5} \,\mathbf{\hat{z}}$ | (4e) | O II |
$\mathbf{B_{9}}$ | = | $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ | = | $- c z_{5} \,\mathbf{\hat{z}}$ | (4e) | O II |
$\mathbf{B_{10}}$ | = | $z_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}$ | = | $c z_{6} \,\mathbf{\hat{z}}$ | (4e) | Sr I |
$\mathbf{B_{11}}$ | = | $- z_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}$ | = | $- c z_{6} \,\mathbf{\hat{z}}$ | (4e) | Sr I |
$\mathbf{B_{12}}$ | = | $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8g) | O III |
$\mathbf{B_{13}}$ | = | $z_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ | (8g) | O III |
$\mathbf{B_{14}}$ | = | $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (8g) | O III |
$\mathbf{B_{15}}$ | = | $- z_{7} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{7} \,\mathbf{\hat{z}}$ | (8g) | O III |