Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC2D8E2_tI30_139_e_a_e_2eg_e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/BZRA
or https://aflow.org/p/A2BC2D8E2_tI30_139_e_a_e_2eg_e-001
or PDF Version

Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8}$ (BSCCO) Structure: A2BC2D8E2_tI30_139_e_a_e_2eg_e-001

Picture of Structure; Click for Big Picture
Prototype Ba$_{2}$CaCu$_{2}$O$_{8}$Sr$_{2}$
AFLOW prototype label A2BC2D8E2_tI30_139_e_a_e_2eg_e-001
ICSD 68188
Pearson symbol tI30
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=A2BC2D8E2_tI30_139_e_a_e_2eg_e-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ca I
$\mathbf{B_{2}}$ = $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ = $c z_{2} \,\mathbf{\hat{z}}$ (4e) Bi I
$\mathbf{B_{3}}$ = $- z_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}$ = $- c z_{2} \,\mathbf{\hat{z}}$ (4e) Bi I
$\mathbf{B_{4}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) Cu I
$\mathbf{B_{5}}$ = $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) Cu I
$\mathbf{B_{6}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{7}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{8}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ = $c z_{5} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{9}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{10}}$ = $z_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}$ = $c z_{6} \,\mathbf{\hat{z}}$ (4e) Sr I
$\mathbf{B_{11}}$ = $- z_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}$ = $- c z_{6} \,\mathbf{\hat{z}}$ (4e) Sr I
$\mathbf{B_{12}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8g) O III
$\mathbf{B_{13}}$ = $z_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{7} \,\mathbf{\hat{z}}$ (8g) O III
$\mathbf{B_{14}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8g) O III
$\mathbf{B_{15}}$ = $- z_{7} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{7} \,\mathbf{\hat{z}}$ (8g) O III

References

  • J. K. Liang, S. S. Xie, G. C. Che, J. Q. Huang, Y. L. Zhang, and Z. X. Zhao, Crystal Structure and Superconductivity of Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8}$ Compound, Mod. Phys. Lett. B 2, 483–489 (1988), doi:10.1142/S0217984988000059.

Prototype Generator

aflow --proto=A2BC2D8E2_tI30_139_e_a_e_2eg_e --params=$a,c/a,z_{2},z_{3},z_{4},z_{5},z_{6},z_{7}$

Species:

Running:

Output: