Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A8B4C4DE8F2_oP108_62_4c2d_2d_2cd_c_4c2d_d-001

This structure originally had the label A8B4C4DE8F2_oP108_62_4c2d_2d_2cd_c_4c2d_d. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/BH4W
or https://aflow.org/p/A8B4C4DE8F2_oP108_62_4c2d_2d_2cd_c_4c2d_d-001
or PDF Version

K$_{4}$[Mo(CN)$_{8}$]$\cdot$ 2H$_{2}$O ($F2_{1}$) Structure: A8B4C4DE8F2_oP108_62_4c2d_2d_2cd_c_4c2d_d-001

Picture of Structure; Click for Big Picture
Prototype C$_{8}$H$_{4}$K$_{4}$MoN$_{8}$O$_{2}$
AFLOW prototype label A8B4C4DE8F2_oP108_62_4c2d_2d_2cd_c_4c2d_d-001
Strukturbericht designation $F2_{1}$
ICSD none
Pearson symbol oP108
Space group number 62
Space group symbol $Pnma$
AFLOW prototype command aflow --proto=A8B4C4DE8F2_oP108_62_4c2d_2d_2cd_c_4c2d_d-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}$

  • (Hoard, 1939) originally determined this structure, but were unable to locate the hydrogen atoms. (Herrmann, 1943) gave this the Struckturbericht designation $F2_{1}$. (Typilo, 2010) were able to refine the structure at 173K, including the hydrogen positions. Since the space group and Wyckoff positions are otherwise unchanged we use the newer structure as our prototype.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4c) C I
$\mathbf{B_{2}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) C I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ (4c) C I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) C I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4c) C II
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) C II
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (4c) C II
$\mathbf{B_{8}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) C II
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4c) C III
$\mathbf{B_{10}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) C III
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4c) C III
$\mathbf{B_{12}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) C III
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4c) C IV
$\mathbf{B_{14}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) C IV
$\mathbf{B_{15}}$ = $- x_{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4c) C IV
$\mathbf{B_{16}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) C IV
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4c) K I
$\mathbf{B_{18}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) K I
$\mathbf{B_{19}}$ = $- x_{5} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (4c) K I
$\mathbf{B_{20}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) K I
$\mathbf{B_{21}}$ = $x_{6} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4c) K II
$\mathbf{B_{22}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) K II
$\mathbf{B_{23}}$ = $- x_{6} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (4c) K II
$\mathbf{B_{24}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) K II
$\mathbf{B_{25}}$ = $x_{7} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4c) Mo I
$\mathbf{B_{26}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) Mo I
$\mathbf{B_{27}}$ = $- x_{7} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (4c) Mo I
$\mathbf{B_{28}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) Mo I
$\mathbf{B_{29}}$ = $x_{8} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4c) N I
$\mathbf{B_{30}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) N I
$\mathbf{B_{31}}$ = $- x_{8} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (4c) N I
$\mathbf{B_{32}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) N I
$\mathbf{B_{33}}$ = $x_{9} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4c) N II
$\mathbf{B_{34}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) N II
$\mathbf{B_{35}}$ = $- x_{9} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (4c) N II
$\mathbf{B_{36}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) N II
$\mathbf{B_{37}}$ = $x_{10} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4c) N III
$\mathbf{B_{38}}$ = $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) N III
$\mathbf{B_{39}}$ = $- x_{10} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (4c) N III
$\mathbf{B_{40}}$ = $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) N III
$\mathbf{B_{41}}$ = $x_{11} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (4c) N IV
$\mathbf{B_{42}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) N IV
$\mathbf{B_{43}}$ = $- x_{11} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (4c) N IV
$\mathbf{B_{44}}$ = $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) N IV
$\mathbf{B_{45}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8d) C V
$\mathbf{B_{46}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) C V
$\mathbf{B_{47}}$ = $- x_{12} \, \mathbf{a}_{1}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+b \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8d) C V
$\mathbf{B_{48}}$ = $\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) C V
$\mathbf{B_{49}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8d) C V
$\mathbf{B_{50}}$ = $\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) C V
$\mathbf{B_{51}}$ = $x_{12} \, \mathbf{a}_{1}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- b \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8d) C V
$\mathbf{B_{52}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) C V
$\mathbf{B_{53}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8d) C VI
$\mathbf{B_{54}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) C VI
$\mathbf{B_{55}}$ = $- x_{13} \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+b \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8d) C VI
$\mathbf{B_{56}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) C VI
$\mathbf{B_{57}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8d) C VI
$\mathbf{B_{58}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) C VI
$\mathbf{B_{59}}$ = $x_{13} \, \mathbf{a}_{1}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- b \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8d) C VI
$\mathbf{B_{60}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) C VI
$\mathbf{B_{61}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8d) H I
$\mathbf{B_{62}}$ = $- \left(x_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) H I
$\mathbf{B_{63}}$ = $- x_{14} \, \mathbf{a}_{1}+\left(y_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+b \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8d) H I
$\mathbf{B_{64}}$ = $\left(x_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) H I
$\mathbf{B_{65}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8d) H I
$\mathbf{B_{66}}$ = $\left(x_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) H I
$\mathbf{B_{67}}$ = $x_{14} \, \mathbf{a}_{1}- \left(y_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- b \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8d) H I
$\mathbf{B_{68}}$ = $- \left(x_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) H I
$\mathbf{B_{69}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8d) H II
$\mathbf{B_{70}}$ = $- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{15} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) H II
$\mathbf{B_{71}}$ = $- x_{15} \, \mathbf{a}_{1}+\left(y_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+b \left(y_{15} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8d) H II
$\mathbf{B_{72}}$ = $\left(x_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{15} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{15} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{15} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) H II
$\mathbf{B_{73}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8d) H II
$\mathbf{B_{74}}$ = $\left(x_{15} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{15} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) H II
$\mathbf{B_{75}}$ = $x_{15} \, \mathbf{a}_{1}- \left(y_{15} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- b \left(y_{15} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8d) H II
$\mathbf{B_{76}}$ = $- \left(x_{15} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{15} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{15} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) H II
$\mathbf{B_{77}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8d) K III
$\mathbf{B_{78}}$ = $- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{16} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) K III
$\mathbf{B_{79}}$ = $- x_{16} \, \mathbf{a}_{1}+\left(y_{16} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}+b \left(y_{16} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8d) K III
$\mathbf{B_{80}}$ = $\left(x_{16} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{16} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{16} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{16} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) K III
$\mathbf{B_{81}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- b y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8d) K III
$\mathbf{B_{82}}$ = $\left(x_{16} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{16} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) K III
$\mathbf{B_{83}}$ = $x_{16} \, \mathbf{a}_{1}- \left(y_{16} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}- b \left(y_{16} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8d) K III
$\mathbf{B_{84}}$ = $- \left(x_{16} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{16} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{16} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{16} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) K III
$\mathbf{B_{85}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8d) N V
$\mathbf{B_{86}}$ = $- \left(x_{17} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{17} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) N V
$\mathbf{B_{87}}$ = $- x_{17} \, \mathbf{a}_{1}+\left(y_{17} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}+b \left(y_{17} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8d) N V
$\mathbf{B_{88}}$ = $\left(x_{17} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{17} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{17} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{17} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) N V
$\mathbf{B_{89}}$ = $- x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}- b y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8d) N V
$\mathbf{B_{90}}$ = $\left(x_{17} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{17} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) N V
$\mathbf{B_{91}}$ = $x_{17} \, \mathbf{a}_{1}- \left(y_{17} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}- b \left(y_{17} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8d) N V
$\mathbf{B_{92}}$ = $- \left(x_{17} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{17} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{17} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{17} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) N V
$\mathbf{B_{93}}$ = $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8d) N VI
$\mathbf{B_{94}}$ = $- \left(x_{18} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{18} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) N VI
$\mathbf{B_{95}}$ = $- x_{18} \, \mathbf{a}_{1}+\left(y_{18} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}+b \left(y_{18} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8d) N VI
$\mathbf{B_{96}}$ = $\left(x_{18} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{18} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{18} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{18} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{18} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) N VI
$\mathbf{B_{97}}$ = $- x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}- b y_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8d) N VI
$\mathbf{B_{98}}$ = $\left(x_{18} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}- \left(z_{18} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{18} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) N VI
$\mathbf{B_{99}}$ = $x_{18} \, \mathbf{a}_{1}- \left(y_{18} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}- b \left(y_{18} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8d) N VI
$\mathbf{B_{100}}$ = $- \left(x_{18} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{18} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{18} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{18} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) N VI
$\mathbf{B_{101}}$ = $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8d) O I
$\mathbf{B_{102}}$ = $- \left(x_{19} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{19} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) O I
$\mathbf{B_{103}}$ = $- x_{19} \, \mathbf{a}_{1}+\left(y_{19} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}+b \left(y_{19} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8d) O I
$\mathbf{B_{104}}$ = $\left(x_{19} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{19} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{19} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{19} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) O I
$\mathbf{B_{105}}$ = $- x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8d) O I
$\mathbf{B_{106}}$ = $\left(x_{19} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{19} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) O I
$\mathbf{B_{107}}$ = $x_{19} \, \mathbf{a}_{1}- \left(y_{19} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}- b \left(y_{19} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8d) O I
$\mathbf{B_{108}}$ = $- \left(x_{19} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{19} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{19} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{19} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8d) O I

References

  • I. Typilo, O. Sereda, H. Stoeckli-Evans, R. Gladyshevskii, and D. Semenyshyn, Refinement of the crystal structure of potassium octacyanomolybdate(IV) dihydrate, Chem. Met. Alloys 3, 49–52 (2010).
  • J. L. Hoard and H. N. Nordsieck, The Structure of Potassium Molybdocyanide Dihydrate. The Configuration of the Molybdenum Octocyanide Group, J. Am. Chem. Soc. 61, 2853–2863 (1939), doi:10.1021/ja01265a083.
  • K. Herrmann, ed., Strukturbericht Band VII 1939 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1943).

Prototype Generator

aflow --proto=A8B4C4DE8F2_oP108_62_4c2d_2d_2cd_c_4c2d_d --params=$a,b/a,c/a,x_{1},z_{1},x_{2},z_{2},x_{3},z_{3},x_{4},z_{4},x_{5},z_{5},x_{6},z_{6},x_{7},z_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18},x_{19},y_{19},z_{19}$

Species:

Running:

Output: