AFLOW Prototype: ABC2_mP8_10_ac_eh_mn-001
This structure originally had the label ABC2_mP8_10_ac_eh_mn. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/ALSR
or
https://aflow.org/p/ABC2_mP8_10_ac_eh_mn-001
or
PDF Version
Prototype | AgAuTe$_{2}$ |
AFLOW prototype label | ABC2_mP8_10_ac_eh_mn-001 |
Mineral name | muthmannite |
ICSD | 55250 |
Pearson symbol | mP8 |
Space group number | 10 |
Space group symbol | $P2/m$ |
AFLOW prototype command |
aflow --proto=ABC2_mP8_10_ac_eh_mn-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ag I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ | (1c) | Ag II |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (1e) | Au I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}\left(a + c \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ | (1h) | Au II |
$\mathbf{B_{5}}$ | = | $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | Te I |
$\mathbf{B_{6}}$ | = | $- x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | Te I |
$\mathbf{B_{7}}$ | = | $x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | Te II |
$\mathbf{B_{8}}$ | = | $- x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | Te II |