Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABCD_tP8_129_c_b_a_c-001

This structure originally had the label ABCD_tP8_129_c_b_a_c. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/1T51
or https://aflow.org/p/ABCD_tP8_129_c_b_a_c-001
or PDF Version

AsCuSiZr Structure: ABCD_tP8_129_c_b_a_c-001

Picture of Structure; Click for Big Picture
Prototype AsCuSiZr
AFLOW prototype label ABCD_tP8_129_c_b_a_c-001
ICSD 42165
Pearson symbol tP8
Space group number 129
Space group symbol $P4/nmm$
AFLOW prototype command aflow --proto=ABCD_tP8_129_c_b_a_c-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}$

Other compounds with this structure

AsCuHfSi,  BaCuFS,  CeCuSO,  EuCuFS,  EuCuSO,  LaCuSO,  LaOFeAs,  NdCuSO,  PrCuSO,  SmCuSO,  SrCuFS,  As$_{2}$CuU,  Bi$_{2}$CuMn,  CoLiSb$_{2}$,  CuGe$_{2}$HF,  LaMnSb$_{2}$,  NiPrSb$_{2}$


  • This is the parent structure for the iron-pnictide superconductors.
  • This structure has the same space group and Wyckoff positions as LaOAgS, but there is a substantial difference in the $c/a$ ratio leading to different bonding between the layers.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (2a) Si I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (2a) Si I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Cu I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Cu I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (2c) As I
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (2c) As I
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2c) Zr I
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2c) Zr I

References

Found in

  • R. Pöttgen and D. Johrendt, Materials with ZrCuSiAs-type Structure, Z. Naturforsch. B 63, 1135–1148 (2008), doi:10.1515/znb-2008-1001.

Prototype Generator

aflow --proto=ABCD_tP8_129_c_b_a_c --params=$a,c/a,z_{3},z_{4}$

Species:

Running:

Output: