Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC8D2_mP24_13_e_f_4g_g-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/7246
or https://aflow.org/p/ABC8D2_mP24_13_e_f_4g_g-001
or PDF Version

NaIn(WO$_{4}$)$_{2}$ Structure: ABC8D2_mP24_13_e_f_4g_g-001

Picture of Structure; Click for Big Picture
Prototype InNaO$_{8}$W$_{2}$
AFLOW prototype label ABC8D2_mP24_13_e_f_4g_g-001
ICSD 16263
Pearson symbol mP24
Space group number 13
Space group symbol $P2/c$
AFLOW prototype command aflow --proto=ABC8D2_mP24_13_e_f_4g_g-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

Other compounds with this structure

NaFe(WO$_{4}$)$_{2}$,  NaGa(WO$_{4}$)$_{2}$,  NaSc(WO$_{4}$)$_{2}$


  • This structure is related to huanzalaite, MgWO$_{4}$ ($H0_{6}$), an ordered wolframite structure.
  • Space group $P2/c$ #13 allows an arbitrary angle $\beta$ between the $a_{1}$ and $a_{3}$ primitive lattice vectors. (Klevtsov, 1970) state that $\beta = 90° \pm 0.5°$ for all the compounds they studied, and the distances they give between atoms is consistent with $\beta = 90°$. Nevertheless, it is likely that $\beta$ is not exactly a right angle. In huanzalaite, e.g., $\beta = 90.3°$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (2e) In I
$\mathbf{B_{2}}$ = $- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (2e) In I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\left(\frac{a}{2} + \frac{c \cos{\beta}}{4}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (2f) Na I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\left(\frac{a}{2} + \frac{3 c \cos{\beta}}{4}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (2f) Na I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c \left(z_{3} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O I
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{3} + c \left(z_{3} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O II
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c \left(z_{4} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O II
$\mathbf{B_{11}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O II
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{4} + c \left(z_{4} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O II
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O III
$\mathbf{B_{14}}$ = $- x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c \left(z_{5} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O III
$\mathbf{B_{15}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O III
$\mathbf{B_{16}}$ = $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{5} + c \left(z_{5} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O III
$\mathbf{B_{17}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O IV
$\mathbf{B_{18}}$ = $- x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c \left(z_{6} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O IV
$\mathbf{B_{19}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O IV
$\mathbf{B_{20}}$ = $x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{6} + c \left(z_{6} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) O IV
$\mathbf{B_{21}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) W I
$\mathbf{B_{22}}$ = $- x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c \left(z_{7} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) W I
$\mathbf{B_{23}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4g) W I
$\mathbf{B_{24}}$ = $x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{7} + c \left(z_{7} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4g) W I

References

  • P. V. Klevtsov and R. F. Klevtsova, Single-crystal synthesis and investigation of the double tungstates NaR$^{3}$(WO$_{4}$)$_{2}$, where R$^{3}$ = Fe, Sc, Ga, and In, J. Solid State Chem. 2, 278–282 (1970), doi:10.1016/0022-4596(70)90080-0.

Found in

  • S. A. Naidu, S. Boudin, U. V. Varadaraju, and B. Raveau, Photoluminescence properties of rare earths (Eu$^{3}$, Tb$^{3}$, Dy$^{3}$ and Tm$^{3}$) activated NaInW$_{2}$O$_{8}$ wolframite host lattice, J. Solid State Chem. 185, 187–190 (2012), doi:10.1016/j.jssc.2011.10.035.

Prototype Generator

aflow --proto=ABC8D2_mP24_13_e_f_4g_g --params=$a,b/a,c/a,\beta,y_{1},y_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: