Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC2_hR24_167_e_e_2e-001

This structure originally had the label ABC2_hR24_167_e_e_2e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/L33F
or https://aflow.org/p/ABC2_hR24_167_e_e_2e-001
or PDF Version

KBO$_{2}$ ($F5_{13}$) Structure: ABC2_hR24_167_e_e_2e-001

Picture of Structure; Click for Big Picture
Prototype BKO$_{2}$
AFLOW prototype label ABC2_hR24_167_e_e_2e-001
Strukturbericht designation $F5_{13}$
ICSD 16005
Pearson symbol hR24
Space group number 167
Space group symbol $R\overline{3}c$
AFLOW prototype command aflow --proto=ABC2_hR24_167_e_e_2e-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}$

Other compounds with this structure

NaBO$_{2}$,  NaBS$_{2}$


  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{1} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{1} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) B I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{1} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{1} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) B I
$\mathbf{B_{3}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) B I
$\mathbf{B_{4}}$ = $- x_{1} \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{1} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{1} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) B I
$\mathbf{B_{5}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{1} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{1} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) B I
$\mathbf{B_{6}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) B I
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) K I
$\mathbf{B_{8}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) K I
$\mathbf{B_{9}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) K I
$\mathbf{B_{10}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{2} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{2} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) K I
$\mathbf{B_{11}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{2} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) K I
$\mathbf{B_{12}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) K I
$\mathbf{B_{13}}$ = $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{14}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{15}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{16}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{3} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{3} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{17}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{3} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{18}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{19}}$ = $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{4} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{4} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O II
$\mathbf{B_{20}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{4} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{4} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O II
$\mathbf{B_{21}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O II
$\mathbf{B_{22}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{4} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{4} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O II
$\mathbf{B_{23}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{4} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{4} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O II
$\mathbf{B_{24}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O II

References

  • W. Schneider and G. B. Carpenter, Bond lengths and thermal parameters of potassium metaborate, K$_{3}$B$_{3}$O$_{6}$, Acta Crystallogr. Sect. B 26, 1189–1191 (1970), doi:10.1107/S0567740870003849.

Found in

  • P. Villars, K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk, O. Pavlyuk, I. Savysyuk, S. Stoyko, and L. Sysa, Landolt-Börnstein - Group III Condensed Matter (Numerical Data and Functional Relationships in Science and Technology) (Springer, Berlin, Heidelberg, 2007), vol. 43A5, chap. KBO2 in Structure Types. Part 5: Space Groups (173) P63 - (166) R-3m.

Prototype Generator

aflow --proto=ABC2_hR24_167_e_e_2e --params=$a,c/a,x_{1},x_{2},x_{3},x_{4}$

Species:

Running:

Output: