Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB8C_cF40_225_a_f_b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/WSA1
or https://aflow.org/p/AB8C_cF40_225_a_f_b-001
or PDF Version

Room Temperature KBD$_{4}$ Structure: AB8C_cF40_225_a_f_b-001

Picture of Structure; Click for Big Picture
Prototype BH$_{4}$K
AFLOW prototype label AB8C_cF40_225_a_f_b-001
ICSD 99263
Pearson symbol cF40
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=AB8C_cF40_225_a_f_b-001
--params=$a, \allowbreak x_{3}$

Other compounds with this structure

CsBD$_{4}$,  CsBH$_{4}$,  KBH$_{4}$,  LaBH$_{8}$,  NaBD$_{4}$,  NaBH$_{4}$,  RbBD$_{4}$,  RbBH$_{4}$


  • This is the room-temperature phase of all of these structures.
  • Below 70K KBD$_{4}$ transforms into a tetragonal structure with the deuterium atoms forming a tetrahedron around the boron, but this is not seen for (Cs,Na,Rb)BD$_{4}$ or (Cs,Na,Rb)BH$_{4}$, where the system remains cubic (Renaudin, 2004).
  • In all of the ABD$_{4}$ structures the deuterium atoms only occupy half of the (32f) sites. (Soldate, 1954) suggests that in the H$_{4}$ compounds the hydrogen atoms form a rotating tetrahedra around the boron atoms.
  • (Di Cataldo, 2021) predict LaBH$_{8}$ forms in this structure at pressures around 50 GPa, where it would superconduct with $T_{c} = 126$K. In this case the (32f) sites are fully filled.
  • Most authors use NaBH$_{4}$ as the prototype, but since (Renaudin, 2004) provide information on the location of the deuterium atoms we use KBD$_{4}$, with data taken at room temperature, we use this as the prototype.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) B I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) K I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) D I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) D I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) D I
$\mathbf{B_{6}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) D I
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+3 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) D I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) D I
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}+3 x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) D I
$\mathbf{B_{10}}$ = $3 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) D I

References

  • G. Renaudin, S. Gomes, H. Hagemann, L. Keller, and K. Yvon, Structural and spectroscopic studies on the alkali borohydrides MBH$_{4}$ (M = Na, K, Rb, Cs), J. Alloys Compd. 375, 98–106 (2004), doi:10.1016/j.jallcom.2003.11.018.
  • A. M. Soldate, Crystal Structure of Sodium Borohydride, J. Am. Chem. Soc. 69, 987–988 (1954), doi:10.1021/ja01197a002.

Found in

  • S. D. Cataldo, C. Heil, W. von der Linden, and L. Boeri, LaBH$_{8}$: the first high-T$_{c}$ low-pressure superhydride, Phys. Rev. B 104, L020511 (2021), doi:10.1103/PhysRevB.104.L020511.

Prototype Generator

aflow --proto=AB8C_cF40_225_a_f_b --params=$a,x_{3}$

Species:

Running:

Output: