Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB8C24D2E84F12_cF2096_228_a_cg_2h_b_7h_h-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/E4V9
or https://aflow.org/p/AB8C24D2E84F12_cF2096_228_a_cg_2h_b_7h_h-001
or PDF Version

Voltaite (K$_{2}$Fe$_{8}$Al[SO$_{4}$]$_{12}\cdot$18H$_{2}$O) Structure: AB8C24D2E84F12_cF2096_228_a_cg_2h_b_7h_h-001

Picture of Structure; Click for Big Picture
Prototype AlFe$_{8}$H$_{18}$K$_{2}$O$_{66}$S$_{12}$
AFLOW prototype label AB8C24D2E84F12_cF2096_228_a_cg_2h_b_7h_h-001
Mineral name voltaite
ICSD 9254
Pearson symbol cF2096
Space group number 228
Space group symbol $Fd\overline{3}c$
AFLOW prototype command aflow --proto=AB8C24D2E84F12_cF2096_228_a_cg_2h_b_7h_h-001
--params=$a, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}$

Other compounds with this structure

K$_{2}$(Fe$_{x}$,  Cd$_{1-x}$)$_{8}$Al[SO$_{4}$]$_{12}\cdot$18H$_{2}$O,  K$_{2}$(Fe$_{x}$,  Mg$_{1-x}$)$_{8}$Al[SO$_{4}$]$_{12}\cdot$18H$_{2}$O,  K$_{2}$(Fe$_{x}$,  Mn$_{1-x}$)$_{8}$Al[SO$_{4}$]$_{12}\cdot$18H$_{2}$O,  K$_{2}$(Fe$_{x}$,  Zn$_{1-x}$)$_{8}$Al[SO$_{4}$]$_{12}\cdot$18H$_{2}$O,  K$_{2}$(Mg$_{x}$,  Zn$_{1-x}$)$_{8}$Al[SO$_{4}$]$_{12}\cdot$18H$_{2}$O


  • Voltaite can have numerous substitutions on the iron sites. In addition, the Fe-II site can have both Fe$^{2+}$ and Fe$^{3+}$ ions.
  • The O-VI and O-VII sites are actually water molecules where the positions of the hydrogens has not been located or the molecules are freely rotating. There are 24 of these sites around each aluminum atom. The O-VI sites form four triangular clusters $≈ 1.9$Å from the aluminum, with the distance between sites in a cluster of $≈ 1.1$Å. The O-VII sites form four similar clusters with somewhat larger spacings. Only 6 (25%) of the O-VI/O-VIII sites are occupied. Presumably no more than one site in a given cluster is occupied.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (16a) Al I
$\mathbf{B_{2}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (16a) Al I
$\mathbf{B_{3}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (16a) Al I
$\mathbf{B_{4}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (16a) Al I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32b) K I
$\mathbf{B_{6}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32b) K I
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32b) K I
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32b) K I
$\mathbf{B_{9}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (32b) K I
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (32b) K I
$\mathbf{B_{11}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32b) K I
$\mathbf{B_{12}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32b) K I
$\mathbf{B_{13}}$ = $0$ = $0$ (32c) Fe I
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (32c) Fe I
$\mathbf{B_{15}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Fe I
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Fe I
$\mathbf{B_{17}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32c) Fe I
$\mathbf{B_{18}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (32c) Fe I
$\mathbf{B_{19}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Fe I
$\mathbf{B_{20}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (32c) Fe I
$\mathbf{B_{21}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{22}}$ = $- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{23}}$ = $\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{24}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{25}}$ = $\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{26}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{27}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{28}}$ = $- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{29}}$ = $- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{30}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{31}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{32}}$ = $\left(2 y_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{33}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{34}}$ = $\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{35}}$ = $- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{36}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{37}}$ = $- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{38}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{39}}$ = $\frac{1}{4} \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{40}}$ = $\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{41}}$ = $\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{42}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{43}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{44}}$ = $- \left(2 y_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(2 y_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (96g) Fe II
$\mathbf{B_{45}}$ = $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{46}}$ = $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{47}}$ = $\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{48}}$ = $- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{49}}$ = $\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{50}}$ = $- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{51}}$ = $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{52}}$ = $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{53}}$ = $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{54}}$ = $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{55}}$ = $- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{56}}$ = $\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{57}}$ = $\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{58}}$ = $- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{59}}$ = $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{60}}$ = $\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{61}}$ = $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{62}}$ = $\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{63}}$ = $\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{64}}$ = $- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{65}}$ = $- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{66}}$ = $\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{67}}$ = $\left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{68}}$ = $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{69}}$ = $\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{70}}$ = $- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{71}}$ = $- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{72}}$ = $\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{73}}$ = $- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{74}}$ = $\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{75}}$ = $\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{76}}$ = $- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{77}}$ = $- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{78}}$ = $\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{79}}$ = $\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{80}}$ = $- \left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{81}}$ = $\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{82}}$ = $\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{83}}$ = $\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{84}}$ = $- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{85}}$ = $\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{86}}$ = $- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{87}}$ = $\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{88}}$ = $\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{89}}$ = $\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{90}}$ = $\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{91}}$ = $- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{92}}$ = $\left(x_{5} + y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H I
$\mathbf{B_{93}}$ = $\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{94}}$ = $\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{95}}$ = $\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{96}}$ = $- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{97}}$ = $\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{98}}$ = $- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{99}}$ = $\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{100}}$ = $\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{101}}$ = $\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{102}}$ = $\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{103}}$ = $- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{104}}$ = $\left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{105}}$ = $\left(x_{6} - y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{106}}$ = $- \left(x_{6} - y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{107}}$ = $- \left(x_{6} + y_{6} - z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{108}}$ = $\left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{109}}$ = $- \left(x_{6} + y_{6} - z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{110}}$ = $\left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{111}}$ = $\left(x_{6} - y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{112}}$ = $- \left(x_{6} - y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{113}}$ = $- \left(x_{6} - y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{114}}$ = $\left(x_{6} - y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{115}}$ = $\left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{116}}$ = $- \left(x_{6} + y_{6} - z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{117}}$ = $\left(x_{6} - y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{118}}$ = $- \left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{119}}$ = $- \left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{120}}$ = $\left(x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{121}}$ = $- \left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{122}}$ = $\left(x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{123}}$ = $\left(x_{6} - y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{124}}$ = $- \left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{125}}$ = $- \left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{126}}$ = $\left(x_{6} - y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{127}}$ = $\left(x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{128}}$ = $- \left(x_{6} + y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{129}}$ = $\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{130}}$ = $\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{131}}$ = $\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{132}}$ = $- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{133}}$ = $\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{134}}$ = $- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{135}}$ = $\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{136}}$ = $\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{137}}$ = $\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{138}}$ = $\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{139}}$ = $- \left(x_{6} + y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{140}}$ = $\left(x_{6} + y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) H II
$\mathbf{B_{141}}$ = $\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{142}}$ = $\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{143}}$ = $\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{144}}$ = $- \left(x_{7} + y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{145}}$ = $\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{146}}$ = $- \left(x_{7} + y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{147}}$ = $\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{148}}$ = $\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{149}}$ = $\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{150}}$ = $\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{151}}$ = $- \left(x_{7} + y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{152}}$ = $\left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{153}}$ = $\left(x_{7} - y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{154}}$ = $- \left(x_{7} - y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{155}}$ = $- \left(x_{7} + y_{7} - z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{156}}$ = $\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{157}}$ = $- \left(x_{7} + y_{7} - z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{158}}$ = $\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{159}}$ = $\left(x_{7} - y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{160}}$ = $- \left(x_{7} - y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{161}}$ = $- \left(x_{7} - y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{162}}$ = $\left(x_{7} - y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{163}}$ = $\left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{164}}$ = $- \left(x_{7} + y_{7} - z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{165}}$ = $\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{166}}$ = $- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{167}}$ = $- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{168}}$ = $\left(x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{169}}$ = $- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{170}}$ = $\left(x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{171}}$ = $\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{172}}$ = $- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{173}}$ = $- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{174}}$ = $\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{175}}$ = $\left(x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{176}}$ = $- \left(x_{7} + y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{177}}$ = $\left(- x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{178}}$ = $\left(x_{7} - y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{179}}$ = $\left(x_{7} + y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{180}}$ = $- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{181}}$ = $\left(x_{7} + y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{182}}$ = $- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{183}}$ = $\left(- x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{184}}$ = $\left(x_{7} - y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{185}}$ = $\left(x_{7} - y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{186}}$ = $\left(- x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{187}}$ = $- \left(x_{7} + y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(- x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{188}}$ = $\left(x_{7} + y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O I
$\mathbf{B_{189}}$ = $\left(- x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{190}}$ = $\left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(- x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{191}}$ = $\left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{192}}$ = $- \left(x_{8} + y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{193}}$ = $\left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(- x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{194}}$ = $- \left(x_{8} + y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{195}}$ = $\left(- x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{196}}$ = $\left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{197}}$ = $\left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{198}}$ = $\left(- x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{199}}$ = $- \left(x_{8} + y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{200}}$ = $\left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{201}}$ = $\left(x_{8} - y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{202}}$ = $- \left(x_{8} - y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{203}}$ = $- \left(x_{8} + y_{8} - z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{204}}$ = $\left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} - z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{205}}$ = $- \left(x_{8} + y_{8} - z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{206}}$ = $\left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{207}}$ = $\left(x_{8} - y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} - z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{208}}$ = $- \left(x_{8} - y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{209}}$ = $- \left(x_{8} - y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} - z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{210}}$ = $\left(x_{8} - y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{211}}$ = $\left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{212}}$ = $- \left(x_{8} + y_{8} - z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{213}}$ = $\left(x_{8} - y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{214}}$ = $- \left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{215}}$ = $- \left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{216}}$ = $\left(x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{217}}$ = $- \left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{218}}$ = $\left(x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{219}}$ = $\left(x_{8} - y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{220}}$ = $- \left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{221}}$ = $- \left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{222}}$ = $\left(x_{8} - y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{223}}$ = $\left(x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{224}}$ = $- \left(x_{8} + y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{225}}$ = $\left(- x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{226}}$ = $\left(x_{8} - y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{227}}$ = $\left(x_{8} + y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{228}}$ = $- \left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{229}}$ = $\left(x_{8} + y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{230}}$ = $- \left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{231}}$ = $\left(- x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{232}}$ = $\left(x_{8} - y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{233}}$ = $\left(x_{8} - y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{234}}$ = $\left(- x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{235}}$ = $- \left(x_{8} + y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(- x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{236}}$ = $\left(x_{8} + y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O II
$\mathbf{B_{237}}$ = $\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{238}}$ = $\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{239}}$ = $\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{240}}$ = $- \left(x_{9} + y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{241}}$ = $\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{242}}$ = $- \left(x_{9} + y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{243}}$ = $\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{244}}$ = $\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{245}}$ = $\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{246}}$ = $\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{247}}$ = $- \left(x_{9} + y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{248}}$ = $\left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{249}}$ = $\left(x_{9} - y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{250}}$ = $- \left(x_{9} - y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{251}}$ = $- \left(x_{9} + y_{9} - z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{252}}$ = $\left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} - z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{253}}$ = $- \left(x_{9} + y_{9} - z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{254}}$ = $\left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{255}}$ = $\left(x_{9} - y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} - z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{256}}$ = $- \left(x_{9} - y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{257}}$ = $- \left(x_{9} - y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} - z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{258}}$ = $\left(x_{9} - y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{259}}$ = $\left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{260}}$ = $- \left(x_{9} + y_{9} - z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9} + z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{261}}$ = $\left(x_{9} - y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{262}}$ = $- \left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{263}}$ = $- \left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{264}}$ = $\left(x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{265}}$ = $- \left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a y_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{266}}$ = $\left(x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{267}}$ = $\left(x_{9} - y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{268}}$ = $- \left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{269}}$ = $- \left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{270}}$ = $\left(x_{9} - y_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{271}}$ = $\left(x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{272}}$ = $- \left(x_{9} + y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{273}}$ = $\left(- x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{274}}$ = $\left(x_{9} - y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{275}}$ = $\left(x_{9} + y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{276}}$ = $- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{277}}$ = $\left(x_{9} + y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{278}}$ = $- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{279}}$ = $\left(- x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{280}}$ = $\left(x_{9} - y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{281}}$ = $\left(x_{9} - y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{282}}$ = $\left(- x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{283}}$ = $- \left(x_{9} + y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(- x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{284}}$ = $\left(x_{9} + y_{9} - z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O III
$\mathbf{B_{285}}$ = $\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{286}}$ = $\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{287}}$ = $\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{288}}$ = $- \left(x_{10} + y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{289}}$ = $\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a y_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{290}}$ = $- \left(x_{10} + y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{291}}$ = $\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{292}}$ = $\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{293}}$ = $\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{294}}$ = $\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{295}}$ = $- \left(x_{10} + y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{296}}$ = $\left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{297}}$ = $\left(x_{10} - y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{298}}$ = $- \left(x_{10} - y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{299}}$ = $- \left(x_{10} + y_{10} - z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{300}}$ = $\left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} - z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{301}}$ = $- \left(x_{10} + y_{10} - z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{302}}$ = $\left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{303}}$ = $\left(x_{10} - y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} - z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{304}}$ = $- \left(x_{10} - y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{305}}$ = $- \left(x_{10} - y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} - z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{306}}$ = $\left(x_{10} - y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{307}}$ = $\left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{308}}$ = $- \left(x_{10} + y_{10} - z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10} + z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{309}}$ = $\left(x_{10} - y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{310}}$ = $- \left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{311}}$ = $- \left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{312}}$ = $\left(x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{313}}$ = $- \left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a y_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{314}}$ = $\left(x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{315}}$ = $\left(x_{10} - y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{316}}$ = $- \left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{317}}$ = $- \left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{318}}$ = $\left(x_{10} - y_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{319}}$ = $\left(x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{320}}$ = $- \left(x_{10} + y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{321}}$ = $\left(- x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{322}}$ = $\left(x_{10} - y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{323}}$ = $\left(x_{10} + y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{324}}$ = $- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{325}}$ = $\left(x_{10} + y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{326}}$ = $- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{327}}$ = $\left(- x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{328}}$ = $\left(x_{10} - y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{329}}$ = $\left(x_{10} - y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{330}}$ = $\left(- x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{331}}$ = $- \left(x_{10} + y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(- x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{332}}$ = $\left(x_{10} + y_{10} - z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O IV
$\mathbf{B_{333}}$ = $\left(- x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{334}}$ = $\left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(- x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{335}}$ = $\left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{336}}$ = $- \left(x_{11} + y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{337}}$ = $\left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{1}+\left(- x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+a y_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{338}}$ = $- \left(x_{11} + y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(- x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{339}}$ = $\left(- x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{340}}$ = $\left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{341}}$ = $\left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(- x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{342}}$ = $\left(- x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{343}}$ = $- \left(x_{11} + y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{344}}$ = $\left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{345}}$ = $\left(x_{11} - y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{346}}$ = $- \left(x_{11} - y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} - z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{347}}$ = $- \left(x_{11} + y_{11} - z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} - y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{348}}$ = $\left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} - z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{349}}$ = $- \left(x_{11} + y_{11} - z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{350}}$ = $\left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} - z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{351}}$ = $\left(x_{11} - y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} - z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{352}}$ = $- \left(x_{11} - y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{353}}$ = $- \left(x_{11} - y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} - z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{354}}$ = $\left(x_{11} - y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} - z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{355}}$ = $\left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{356}}$ = $- \left(x_{11} + y_{11} - z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11} + z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{357}}$ = $\left(x_{11} - y_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{358}}$ = $- \left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{359}}$ = $- \left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{360}}$ = $\left(x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{361}}$ = $- \left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- a y_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{362}}$ = $\left(x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{363}}$ = $\left(x_{11} - y_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{364}}$ = $- \left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{365}}$ = $- \left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{366}}$ = $\left(x_{11} - y_{11} - z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{367}}$ = $\left(x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{368}}$ = $- \left(x_{11} + y_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{369}}$ = $\left(- x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{370}}$ = $\left(x_{11} - y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{371}}$ = $\left(x_{11} + y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{372}}$ = $- \left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{373}}$ = $\left(x_{11} + y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{374}}$ = $- \left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{375}}$ = $\left(- x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{376}}$ = $\left(x_{11} - y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(- x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{377}}$ = $\left(x_{11} - y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{378}}$ = $\left(- x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{379}}$ = $- \left(x_{11} + y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(- x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{380}}$ = $\left(x_{11} + y_{11} - z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} - y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{11} + y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O V
$\mathbf{B_{381}}$ = $\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}+a z_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{382}}$ = $\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{383}}$ = $\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{384}}$ = $- \left(x_{12} + y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{385}}$ = $\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{1}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a z_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+a y_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{386}}$ = $- \left(x_{12} + y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a z_{12} \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{387}}$ = $\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{388}}$ = $\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{389}}$ = $\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}+a z_{12} \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{390}}$ = $\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{12} \,\mathbf{\hat{y}}- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{391}}$ = $- \left(x_{12} + y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{392}}$ = $\left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{393}}$ = $\left(x_{12} - y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} - y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{394}}$ = $- \left(x_{12} - y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} - z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{395}}$ = $- \left(x_{12} + y_{12} - z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} - y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{396}}$ = $\left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} - z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{397}}$ = $- \left(x_{12} + y_{12} - z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{398}}$ = $\left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} - y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} - z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{399}}$ = $\left(x_{12} - y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} - z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} - y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{400}}$ = $- \left(x_{12} - y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{401}}$ = $- \left(x_{12} - y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} - z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{402}}$ = $\left(x_{12} - y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} - z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{403}}$ = $\left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} - y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{404}}$ = $- \left(x_{12} + y_{12} - z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} - y_{12} + z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{405}}$ = $\left(x_{12} - y_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}- a z_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{406}}$ = $- \left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{407}}$ = $- \left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}+a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{408}}$ = $\left(x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{409}}$ = $- \left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a z_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- a y_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{410}}$ = $\left(x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $- a z_{12} \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{411}}$ = $\left(x_{12} - y_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{412}}$ = $- \left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{413}}$ = $- \left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}- a z_{12} \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{414}}$ = $\left(x_{12} - y_{12} - z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{12} \,\mathbf{\hat{y}}+a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{415}}$ = $\left(x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}+a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{12} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{416}}$ = $- \left(x_{12} + y_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} - y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{12} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{417}}$ = $\left(- x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{418}}$ = $\left(x_{12} - y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{419}}$ = $\left(x_{12} + y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{420}}$ = $- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{421}}$ = $\left(x_{12} + y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{422}}$ = $- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{423}}$ = $\left(- x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{424}}$ = $\left(x_{12} - y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(- x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{425}}$ = $\left(x_{12} - y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} + y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{426}}$ = $\left(- x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{12} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{427}}$ = $- \left(x_{12} + y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(- x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{12} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{428}}$ = $\left(x_{12} + y_{12} - z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} - y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{12} + y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VI
$\mathbf{B_{429}}$ = $\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{430}}$ = $\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{431}}$ = $\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{432}}$ = $- \left(x_{13} + y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{433}}$ = $\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+a y_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{434}}$ = $- \left(x_{13} + y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{435}}$ = $\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{436}}$ = $\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{437}}$ = $\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{438}}$ = $\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{439}}$ = $- \left(x_{13} + y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{440}}$ = $\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{441}}$ = $\left(x_{13} - y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} - y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{442}}$ = $- \left(x_{13} - y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} - z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{443}}$ = $- \left(x_{13} + y_{13} - z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{444}}$ = $\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} - z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{445}}$ = $- \left(x_{13} + y_{13} - z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{446}}$ = $\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} - z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{447}}$ = $\left(x_{13} - y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} - z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{448}}$ = $- \left(x_{13} - y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{449}}$ = $- \left(x_{13} - y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} - z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{450}}$ = $\left(x_{13} - y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} - z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{451}}$ = $\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{452}}$ = $- \left(x_{13} + y_{13} - z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} - y_{13} + z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{453}}$ = $\left(x_{13} - y_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{454}}$ = $- \left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{455}}$ = $- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{456}}$ = $\left(x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{457}}$ = $- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- a y_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{458}}$ = $\left(x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{459}}$ = $\left(x_{13} - y_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{460}}$ = $- \left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{461}}$ = $- \left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{462}}$ = $\left(x_{13} - y_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{463}}$ = $\left(x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{464}}$ = $- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{465}}$ = $\left(- x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{466}}$ = $\left(x_{13} - y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{467}}$ = $\left(x_{13} + y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{468}}$ = $- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{469}}$ = $\left(x_{13} + y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{470}}$ = $- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{471}}$ = $\left(- x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{472}}$ = $\left(x_{13} - y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(- x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{473}}$ = $\left(x_{13} - y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{474}}$ = $\left(- x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{475}}$ = $- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(- x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{476}}$ = $\left(x_{13} + y_{13} - z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{13} + y_{13} + z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) O VII
$\mathbf{B_{477}}$ = $\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}+a z_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{478}}$ = $\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{479}}$ = $\left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{480}}$ = $- \left(x_{14} + y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{481}}$ = $\left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $a z_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+a y_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{482}}$ = $- \left(x_{14} + y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $a z_{14} \,\mathbf{\hat{x}}- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{483}}$ = $\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a y_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{484}}$ = $\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{485}}$ = $\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}+a z_{14} \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{486}}$ = $\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{14} \,\mathbf{\hat{y}}- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{487}}$ = $- \left(x_{14} + y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{488}}$ = $\left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{489}}$ = $\left(x_{14} - y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{14} - y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{490}}$ = $- \left(x_{14} - y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} - z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{491}}$ = $- \left(x_{14} + y_{14} - z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{492}}$ = $\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} - z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{493}}$ = $- \left(x_{14} + y_{14} - z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{494}}$ = $\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} - z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{495}}$ = $\left(x_{14} - y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} - z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{496}}$ = $- \left(x_{14} - y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{497}}$ = $- \left(x_{14} - y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} - z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{498}}$ = $\left(x_{14} - y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} - z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{499}}$ = $\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{500}}$ = $- \left(x_{14} + y_{14} - z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{14} - y_{14} + z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{501}}$ = $\left(x_{14} - y_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}- a z_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{502}}$ = $- \left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{503}}$ = $- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}+a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{504}}$ = $\left(x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{505}}$ = $- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a z_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- a y_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{506}}$ = $\left(x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $- a z_{14} \,\mathbf{\hat{x}}+a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{507}}$ = $\left(x_{14} - y_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a y_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{508}}$ = $- \left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{509}}$ = $- \left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}- a z_{14} \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{510}}$ = $\left(x_{14} - y_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{14} \,\mathbf{\hat{y}}+a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{511}}$ = $\left(x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}+a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{14} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{512}}$ = $- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{14} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{14} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{14} \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{513}}$ = $\left(- x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{514}}$ = $\left(x_{14} - y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{515}}$ = $\left(x_{14} + y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{516}}$ = $- \left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{517}}$ = $\left(x_{14} + y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{518}}$ = $- \left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{519}}$ = $\left(- x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{520}}$ = $\left(x_{14} - y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(- x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{521}}$ = $\left(x_{14} - y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{522}}$ = $\left(- x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{14} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{523}}$ = $- \left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(- x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{14} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{14} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (192h) S I
$\mathbf{B_{524}}$ = $\left(x_{14} + y_{14} - z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{14} + y_{14} + z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (192h) S I

References

  • K. Mereiter, Die Kristallstruktur des Voltaits, K$_{2}$Fe$^{2+}_{5}$Fe$^{3+}_{3}$Al[SO$_{4}$]$_{12}$$\cdot$18H$_{2}$O, TMPM Tschermaks Min. Petr. Mitt. 18, 185–202 (1972), doi:10.1007/BF01134207.

Found in

  • J. Majzlan, H. Schlicht, M. Wierzbicka-Wieczorek, G. Giester, H. Pöllmann, B. Brömme, S. Doyle, G. Buth, and C. B. Koch, A contribution to the crystal chemistry of the voltaite group: solid solutions, Mössbauer and infrared spectra, and anomalous anisotropy, Miner. and Petro. 107, 221–233 (2013), doi:10.1007/s00710-012-0254-2.

Prototype Generator

aflow --proto=AB8C24D2E84F12_cF2096_228_a_cg_2h_b_7h_h --params=$a,y_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14}$

Species:

Running:

Output: