Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4C_tP12_112_b_n_e-001

This structure originally had the label AB4C_tP12_112_b_n_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/FV74
or https://aflow.org/p/AB4C_tP12_112_b_n_e-001
or PDF Version

α-CuAlCl$_{4}$ Structure: AB4C_tP12_112_b_n_e-001

Picture of Structure; Click for Big Picture
Prototype AlCl$_{4}$Cu
AFLOW prototype label AB4C_tP12_112_b_n_e-001
ICSD 165608
Pearson symbol tP12
Space group number 112
Space group symbol $P\overline{4}2c$
AFLOW prototype command aflow --proto=AB4C_tP12_112_b_n_e-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

$\alpha$-CuAlBr$_{4}$,  $\alpha$-CuAlCl$_{2}$Br$_{2}$,  $\alpha$-CuAlCl$_{3}$Br,  $\alpha$-CuAlClBr$_{3}$,  $\alpha$-CuGaBr$_{4}$,  $\alpha$-CuGaCl$_{4}$


  • This is the ground state structure of CuAlCl$_{4}$. There is also a metastable orthorhombic $\beta$–CuAlCl$_{4}$ structure.
  • The lattice parameters and coordinates of the Wyckoff positions have been inferred from the distance and angular data in (Martin, 1998).
  • The ICSD entry from (Martin, 1998) refers to the related compound $\alpha$–CuAlBr$_{4}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2b) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2b) Al I
$\mathbf{B_{3}}$ = $0$ = $0$ (2e) Cu I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2e) Cu I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8n) Cl I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8n) Cl I
$\mathbf{B_{7}}$ = $y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8n) Cl I
$\mathbf{B_{8}}$ = $- y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (8n) Cl I
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8n) Cl I
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8n) Cl I
$\mathbf{B_{11}}$ = $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8n) Cl I
$\mathbf{B_{12}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8n) Cl I

References

  • J. D. Martin, B. R. Leafblad, R. M. Sullivan, and P. D. Boyle, α- and β-CuAlCl$_{4}$:  Framework Construction Using Corner-Shared Tetrahedral Metal-Halide Building Blocks 37, 1341–1346 (1998), doi:10.1021/ic971148v.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=AB4C_tP12_112_b_n_e --params=$a,c/a,x_{3},y_{3},z_{3}$

Species:

Running:

Output: