Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3_tI16_140_b_ah-001

This structure originally had the label AB3_tI16_140_b_ah. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/6CWC
or https://aflow.org/p/AB3_tI16_140_b_ah-001
or PDF Version

α-SiU$_{3}$ ($D0_{c}$) Structure: AB3_tI16_140_b_ah-001

Picture of Structure; Click for Big Picture
Prototype SiU$_{3}$
AFLOW prototype label AB3_tI16_140_b_ah-001
Strukturbericht designation $D0_{c}$
ICSD 31627
Pearson symbol tI16
Space group number 140
Space group symbol $I4/mcm$
AFLOW prototype command aflow --proto=AB3_tI16_140_b_ah-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}$

Other compounds with this structure

AlPt$_{3}$,  GaPt$_{3}$,  GePt$_{3}$,  SiIr$_{3}$,  SiPt$_{3}$ (HT)


  • This is the ground state of SiU$_{3}$. Above 770$^\circ$C it transforms into $\beta$–SiU$_{3}$ in the Cu$_{3}$Au ($L1_{2}$) structure. (Okamoto, 2013).
  • When $c=2 a$ and $x_{3}=1/4$ the atoms are at the positions of the Cu$_{3}$Au ($L1_{2}$) structure.
  • Many references define both a $D0_{c}$ and a $D0'_{c}$ (Ir$_{3}$Si) structure. The primary difference seems to be positioning the Si atoms on the (2a) or (2b) sites. Since this is merely an origin shift we will ignore the $D0'_{c}$ label.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) U I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (4a) U I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4b) Si I
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4b) Si I
$\mathbf{B_{5}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(2 x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) U II
$\mathbf{B_{6}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(2 x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}$ (8h) U II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (8h) U II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (8h) U II

References

  • W. H. Zachariasen, Crystal chemical studies of the 5f-series of elements. VIII. Crystal structure studies of uranium silicides and of CeSi$_2$, NpSi$_2$, and PuSi$_2$, Acta Cryst. 2, 94–99 (1949), doi:10.1107/S0365110X49000217.
  • H. Okamoto, Si-U (Silicon-Uranium), J. Phase Equilibria Diffus. 34, 167–168 (2013).

Prototype Generator

aflow --proto=AB3_tI16_140_b_ah --params=$a,c/a,x_{3}$

Species:

Running:

Output: