Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3_hP24_149_acgi_3l-001

This structure originally had the label AB3_hP24_149_acgi_3l. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/9DMX
or https://aflow.org/p/AB3_hP24_149_acgi_3l-001
or PDF Version

Ti$_{3}$O (Room-Temperature) Structure: AB3_hP24_149_acgi_3l-001

Picture of Structure; Click for Big Picture
Prototype OTi$_{3}$
AFLOW prototype label AB3_hP24_149_acgi_3l-001
ICSD 36055
Pearson symbol hP24
Space group number 149
Space group symbol $P312$
AFLOW prototype command aflow --proto=AB3_hP24_149_acgi_3l-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) O I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (1c) O II
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2g) O III
$\mathbf{B_{4}}$ = $- z_{3} \, \mathbf{a}_{3}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (2g) O III
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2i) O IV
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2i) O IV
$\mathbf{B_{7}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (6l) Ti I
$\mathbf{B_{8}}$ = $- y_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (6l) Ti I
$\mathbf{B_{9}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (6l) Ti I
$\mathbf{B_{10}}$ = $- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} + y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (6l) Ti I
$\mathbf{B_{11}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{5} + 2 y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (6l) Ti I
$\mathbf{B_{12}}$ = $x_{5} \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (6l) Ti I
$\mathbf{B_{13}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (6l) Ti II
$\mathbf{B_{14}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (6l) Ti II
$\mathbf{B_{15}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (6l) Ti II
$\mathbf{B_{16}}$ = $- y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} + y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (6l) Ti II
$\mathbf{B_{17}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{6} + 2 y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (6l) Ti II
$\mathbf{B_{18}}$ = $x_{6} \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (6l) Ti II
$\mathbf{B_{19}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6l) Ti III
$\mathbf{B_{20}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6l) Ti III
$\mathbf{B_{21}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6l) Ti III
$\mathbf{B_{22}}$ = $- y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} + y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (6l) Ti III
$\mathbf{B_{23}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(- x_{7} + 2 y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (6l) Ti III
$\mathbf{B_{24}}$ = $x_{7} \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(2 x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (6l) Ti III

References

  • A. Jostsons and A. S. Malin, The Ordered Structure of Ti$_{3}$O, Acta Crystallogr. Sect. B 24, 211–213 (1968), doi:10.1107/S0567740868001974.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=AB3_hP24_149_acgi_3l --params=$a,c/a,z_{3},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: