Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB32CD4E8_tP184_93_i_16p_af_2p_4p-001

This structure originally had the label AB32CD4E8_tP184_93_i_16p_af_2p_4p. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/PSUB
or https://aflow.org/p/AB32CD4E8_tP184_93_i_16p_af_2p_4p-001
or PDF Version

AsPh$_{4}$CeS$_{8}$P$_{4}$Me$_{8}$ Structure: AB32CD4E8_tP184_93_i_16p_af_2p_4p-001

Picture of Structure; Click for Big Picture
Prototype AsC$_{32}$CeP$_{4}$S$_{8}$
AFLOW prototype label AB32CD4E8_tP184_93_i_16p_af_2p_4p-001
CCDC 1112344
Pearson symbol tP184
Space group number 93
Space group symbol $P4_222$
AFLOW prototype command aflow --proto=AB32CD4E8_tP184_93_i_16p_af_2p_4p-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak y_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak y_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak y_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak y_{25}, \allowbreak z_{25}$

  • Structures exhibiting space group $P4_{2}22$ #93 are quite rare. A search of the Inorganic Crystal Structure Database does not find an entry with space group #93.
  • The hydrogen atoms are not included in this prototype.
  • The abbreviation Ph represents Phenyl and Me represents Methyl.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ce I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) Ce I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2f) Ce II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2f) Ce II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4i) As I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) As I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ (4i) As I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4i) As I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{11}}$ = $- y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{12}}$ = $y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{13}}$ = $- x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{14}}$ = $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{15}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{16}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C I
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{18}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{19}}$ = $- y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{20}}$ = $y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{21}}$ = $- x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{22}}$ = $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{23}}$ = $y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{24}}$ = $- y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C II
$\mathbf{B_{25}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{26}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{27}}$ = $- y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{28}}$ = $y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{29}}$ = $- x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{30}}$ = $x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{31}}$ = $y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{32}}$ = $- y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C III
$\mathbf{B_{33}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{34}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{35}}$ = $- y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{36}}$ = $y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{37}}$ = $- x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{38}}$ = $x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{39}}$ = $y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{40}}$ = $- y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C IV
$\mathbf{B_{41}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{42}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{43}}$ = $- y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{44}}$ = $y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{45}}$ = $- x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{46}}$ = $x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{47}}$ = $y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{48}}$ = $- y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C V
$\mathbf{B_{49}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{50}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{51}}$ = $- y_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{52}}$ = $y_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{53}}$ = $- x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{54}}$ = $x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{55}}$ = $y_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{56}}$ = $- y_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VI
$\mathbf{B_{57}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{58}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{59}}$ = $- y_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{60}}$ = $y_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{61}}$ = $- x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{62}}$ = $x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{63}}$ = $y_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{64}}$ = $- y_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VII
$\mathbf{B_{65}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{66}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{67}}$ = $- y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{68}}$ = $y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{69}}$ = $- x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{70}}$ = $x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{71}}$ = $y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{72}}$ = $- y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C VIII
$\mathbf{B_{73}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{74}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{75}}$ = $- y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{76}}$ = $y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{77}}$ = $- x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{78}}$ = $x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}- c z_{12} \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{79}}$ = $y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{80}}$ = $- y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C IX
$\mathbf{B_{81}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{82}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{83}}$ = $- y_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{84}}$ = $y_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{85}}$ = $- x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{86}}$ = $x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}- c z_{13} \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{87}}$ = $y_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{88}}$ = $- y_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C X
$\mathbf{B_{89}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{90}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{91}}$ = $- y_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{92}}$ = $y_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{93}}$ = $- x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{94}}$ = $x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}- c z_{14} \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{95}}$ = $y_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{96}}$ = $- y_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XI
$\mathbf{B_{97}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{98}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{99}}$ = $- y_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{100}}$ = $y_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{101}}$ = $- x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{102}}$ = $x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}- c z_{15} \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{103}}$ = $y_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{104}}$ = $- y_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XII
$\mathbf{B_{105}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{106}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{107}}$ = $- y_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{108}}$ = $y_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{109}}$ = $- x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}+a y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{110}}$ = $x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}- a y_{16} \,\mathbf{\hat{y}}- c z_{16} \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{111}}$ = $y_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{112}}$ = $- y_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XIII
$\mathbf{B_{113}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{114}}$ = $- x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}- a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{115}}$ = $- y_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{116}}$ = $y_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{117}}$ = $- x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}+a y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{118}}$ = $x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}- a y_{17} \,\mathbf{\hat{y}}- c z_{17} \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{119}}$ = $y_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{120}}$ = $- y_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XIV
$\mathbf{B_{121}}$ = $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}+a y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{122}}$ = $- x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}- a y_{18} \,\mathbf{\hat{y}}+c z_{18} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{123}}$ = $- y_{18} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{18} \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{124}}$ = $y_{18} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{18} \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{125}}$ = $- x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- a x_{18} \,\mathbf{\hat{x}}+a y_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{126}}$ = $x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $a x_{18} \,\mathbf{\hat{x}}- a y_{18} \,\mathbf{\hat{y}}- c z_{18} \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{127}}$ = $y_{18} \, \mathbf{a}_{1}+x_{18} \, \mathbf{a}_{2}- \left(z_{18} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{18} \,\mathbf{\hat{x}}+a x_{18} \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{128}}$ = $- y_{18} \, \mathbf{a}_{1}- x_{18} \, \mathbf{a}_{2}- \left(z_{18} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{18} \,\mathbf{\hat{x}}- a x_{18} \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XV
$\mathbf{B_{129}}$ = $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}+a y_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{130}}$ = $- x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}- a y_{19} \,\mathbf{\hat{y}}+c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{131}}$ = $- y_{19} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{19} \,\mathbf{\hat{x}}+a x_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{132}}$ = $y_{19} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{19} \,\mathbf{\hat{x}}- a x_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{133}}$ = $- x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- a x_{19} \,\mathbf{\hat{x}}+a y_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{134}}$ = $x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $a x_{19} \,\mathbf{\hat{x}}- a y_{19} \,\mathbf{\hat{y}}- c z_{19} \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{135}}$ = $y_{19} \, \mathbf{a}_{1}+x_{19} \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{19} \,\mathbf{\hat{x}}+a x_{19} \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{136}}$ = $- y_{19} \, \mathbf{a}_{1}- x_{19} \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{19} \,\mathbf{\hat{x}}- a x_{19} \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) C XVI
$\mathbf{B_{137}}$ = $x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}+a y_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (8p) P I
$\mathbf{B_{138}}$ = $- x_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}- a y_{20} \,\mathbf{\hat{y}}+c z_{20} \,\mathbf{\hat{z}}$ (8p) P I
$\mathbf{B_{139}}$ = $- y_{20} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{20} \,\mathbf{\hat{x}}+a x_{20} \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) P I
$\mathbf{B_{140}}$ = $y_{20} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{20} \,\mathbf{\hat{x}}- a x_{20} \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) P I
$\mathbf{B_{141}}$ = $- x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $- a x_{20} \,\mathbf{\hat{x}}+a y_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (8p) P I
$\mathbf{B_{142}}$ = $x_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $a x_{20} \,\mathbf{\hat{x}}- a y_{20} \,\mathbf{\hat{y}}- c z_{20} \,\mathbf{\hat{z}}$ (8p) P I
$\mathbf{B_{143}}$ = $y_{20} \, \mathbf{a}_{1}+x_{20} \, \mathbf{a}_{2}- \left(z_{20} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{20} \,\mathbf{\hat{x}}+a x_{20} \,\mathbf{\hat{y}}- c \left(z_{20} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) P I
$\mathbf{B_{144}}$ = $- y_{20} \, \mathbf{a}_{1}- x_{20} \, \mathbf{a}_{2}- \left(z_{20} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{20} \,\mathbf{\hat{x}}- a x_{20} \,\mathbf{\hat{y}}- c \left(z_{20} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) P I
$\mathbf{B_{145}}$ = $x_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $a x_{21} \,\mathbf{\hat{x}}+a y_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (8p) P II
$\mathbf{B_{146}}$ = $- x_{21} \, \mathbf{a}_{1}- y_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $- a x_{21} \,\mathbf{\hat{x}}- a y_{21} \,\mathbf{\hat{y}}+c z_{21} \,\mathbf{\hat{z}}$ (8p) P II
$\mathbf{B_{147}}$ = $- y_{21} \, \mathbf{a}_{1}+x_{21} \, \mathbf{a}_{2}+\left(z_{21} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{21} \,\mathbf{\hat{x}}+a x_{21} \,\mathbf{\hat{y}}+c \left(z_{21} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) P II
$\mathbf{B_{148}}$ = $y_{21} \, \mathbf{a}_{1}- x_{21} \, \mathbf{a}_{2}+\left(z_{21} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{21} \,\mathbf{\hat{x}}- a x_{21} \,\mathbf{\hat{y}}+c \left(z_{21} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) P II
$\mathbf{B_{149}}$ = $- x_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $- a x_{21} \,\mathbf{\hat{x}}+a y_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (8p) P II
$\mathbf{B_{150}}$ = $x_{21} \, \mathbf{a}_{1}- y_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $a x_{21} \,\mathbf{\hat{x}}- a y_{21} \,\mathbf{\hat{y}}- c z_{21} \,\mathbf{\hat{z}}$ (8p) P II
$\mathbf{B_{151}}$ = $y_{21} \, \mathbf{a}_{1}+x_{21} \, \mathbf{a}_{2}- \left(z_{21} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{21} \,\mathbf{\hat{x}}+a x_{21} \,\mathbf{\hat{y}}- c \left(z_{21} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) P II
$\mathbf{B_{152}}$ = $- y_{21} \, \mathbf{a}_{1}- x_{21} \, \mathbf{a}_{2}- \left(z_{21} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{21} \,\mathbf{\hat{x}}- a x_{21} \,\mathbf{\hat{y}}- c \left(z_{21} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) P II
$\mathbf{B_{153}}$ = $x_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $a x_{22} \,\mathbf{\hat{x}}+a y_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (8p) S I
$\mathbf{B_{154}}$ = $- x_{22} \, \mathbf{a}_{1}- y_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $- a x_{22} \,\mathbf{\hat{x}}- a y_{22} \,\mathbf{\hat{y}}+c z_{22} \,\mathbf{\hat{z}}$ (8p) S I
$\mathbf{B_{155}}$ = $- y_{22} \, \mathbf{a}_{1}+x_{22} \, \mathbf{a}_{2}+\left(z_{22} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{22} \,\mathbf{\hat{x}}+a x_{22} \,\mathbf{\hat{y}}+c \left(z_{22} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S I
$\mathbf{B_{156}}$ = $y_{22} \, \mathbf{a}_{1}- x_{22} \, \mathbf{a}_{2}+\left(z_{22} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{22} \,\mathbf{\hat{x}}- a x_{22} \,\mathbf{\hat{y}}+c \left(z_{22} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S I
$\mathbf{B_{157}}$ = $- x_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $- a x_{22} \,\mathbf{\hat{x}}+a y_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (8p) S I
$\mathbf{B_{158}}$ = $x_{22} \, \mathbf{a}_{1}- y_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $a x_{22} \,\mathbf{\hat{x}}- a y_{22} \,\mathbf{\hat{y}}- c z_{22} \,\mathbf{\hat{z}}$ (8p) S I
$\mathbf{B_{159}}$ = $y_{22} \, \mathbf{a}_{1}+x_{22} \, \mathbf{a}_{2}- \left(z_{22} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{22} \,\mathbf{\hat{x}}+a x_{22} \,\mathbf{\hat{y}}- c \left(z_{22} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S I
$\mathbf{B_{160}}$ = $- y_{22} \, \mathbf{a}_{1}- x_{22} \, \mathbf{a}_{2}- \left(z_{22} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{22} \,\mathbf{\hat{x}}- a x_{22} \,\mathbf{\hat{y}}- c \left(z_{22} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S I
$\mathbf{B_{161}}$ = $x_{23} \, \mathbf{a}_{1}+y_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $a x_{23} \,\mathbf{\hat{x}}+a y_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (8p) S II
$\mathbf{B_{162}}$ = $- x_{23} \, \mathbf{a}_{1}- y_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $- a x_{23} \,\mathbf{\hat{x}}- a y_{23} \,\mathbf{\hat{y}}+c z_{23} \,\mathbf{\hat{z}}$ (8p) S II
$\mathbf{B_{163}}$ = $- y_{23} \, \mathbf{a}_{1}+x_{23} \, \mathbf{a}_{2}+\left(z_{23} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{23} \,\mathbf{\hat{x}}+a x_{23} \,\mathbf{\hat{y}}+c \left(z_{23} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S II
$\mathbf{B_{164}}$ = $y_{23} \, \mathbf{a}_{1}- x_{23} \, \mathbf{a}_{2}+\left(z_{23} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{23} \,\mathbf{\hat{x}}- a x_{23} \,\mathbf{\hat{y}}+c \left(z_{23} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S II
$\mathbf{B_{165}}$ = $- x_{23} \, \mathbf{a}_{1}+y_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $- a x_{23} \,\mathbf{\hat{x}}+a y_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ (8p) S II
$\mathbf{B_{166}}$ = $x_{23} \, \mathbf{a}_{1}- y_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $a x_{23} \,\mathbf{\hat{x}}- a y_{23} \,\mathbf{\hat{y}}- c z_{23} \,\mathbf{\hat{z}}$ (8p) S II
$\mathbf{B_{167}}$ = $y_{23} \, \mathbf{a}_{1}+x_{23} \, \mathbf{a}_{2}- \left(z_{23} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{23} \,\mathbf{\hat{x}}+a x_{23} \,\mathbf{\hat{y}}- c \left(z_{23} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S II
$\mathbf{B_{168}}$ = $- y_{23} \, \mathbf{a}_{1}- x_{23} \, \mathbf{a}_{2}- \left(z_{23} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{23} \,\mathbf{\hat{x}}- a x_{23} \,\mathbf{\hat{y}}- c \left(z_{23} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S II
$\mathbf{B_{169}}$ = $x_{24} \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $a x_{24} \,\mathbf{\hat{x}}+a y_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (8p) S III
$\mathbf{B_{170}}$ = $- x_{24} \, \mathbf{a}_{1}- y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $- a x_{24} \,\mathbf{\hat{x}}- a y_{24} \,\mathbf{\hat{y}}+c z_{24} \,\mathbf{\hat{z}}$ (8p) S III
$\mathbf{B_{171}}$ = $- y_{24} \, \mathbf{a}_{1}+x_{24} \, \mathbf{a}_{2}+\left(z_{24} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{24} \,\mathbf{\hat{x}}+a x_{24} \,\mathbf{\hat{y}}+c \left(z_{24} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S III
$\mathbf{B_{172}}$ = $y_{24} \, \mathbf{a}_{1}- x_{24} \, \mathbf{a}_{2}+\left(z_{24} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{24} \,\mathbf{\hat{x}}- a x_{24} \,\mathbf{\hat{y}}+c \left(z_{24} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S III
$\mathbf{B_{173}}$ = $- x_{24} \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $- a x_{24} \,\mathbf{\hat{x}}+a y_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ (8p) S III
$\mathbf{B_{174}}$ = $x_{24} \, \mathbf{a}_{1}- y_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $a x_{24} \,\mathbf{\hat{x}}- a y_{24} \,\mathbf{\hat{y}}- c z_{24} \,\mathbf{\hat{z}}$ (8p) S III
$\mathbf{B_{175}}$ = $y_{24} \, \mathbf{a}_{1}+x_{24} \, \mathbf{a}_{2}- \left(z_{24} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{24} \,\mathbf{\hat{x}}+a x_{24} \,\mathbf{\hat{y}}- c \left(z_{24} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S III
$\mathbf{B_{176}}$ = $- y_{24} \, \mathbf{a}_{1}- x_{24} \, \mathbf{a}_{2}- \left(z_{24} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{24} \,\mathbf{\hat{x}}- a x_{24} \,\mathbf{\hat{y}}- c \left(z_{24} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S III
$\mathbf{B_{177}}$ = $x_{25} \, \mathbf{a}_{1}+y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $a x_{25} \,\mathbf{\hat{x}}+a y_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (8p) S IV
$\mathbf{B_{178}}$ = $- x_{25} \, \mathbf{a}_{1}- y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $- a x_{25} \,\mathbf{\hat{x}}- a y_{25} \,\mathbf{\hat{y}}+c z_{25} \,\mathbf{\hat{z}}$ (8p) S IV
$\mathbf{B_{179}}$ = $- y_{25} \, \mathbf{a}_{1}+x_{25} \, \mathbf{a}_{2}+\left(z_{25} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{25} \,\mathbf{\hat{x}}+a x_{25} \,\mathbf{\hat{y}}+c \left(z_{25} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S IV
$\mathbf{B_{180}}$ = $y_{25} \, \mathbf{a}_{1}- x_{25} \, \mathbf{a}_{2}+\left(z_{25} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{25} \,\mathbf{\hat{x}}- a x_{25} \,\mathbf{\hat{y}}+c \left(z_{25} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S IV
$\mathbf{B_{181}}$ = $- x_{25} \, \mathbf{a}_{1}+y_{25} \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ = $- a x_{25} \,\mathbf{\hat{x}}+a y_{25} \,\mathbf{\hat{y}}- c z_{25} \,\mathbf{\hat{z}}$ (8p) S IV
$\mathbf{B_{182}}$ = $x_{25} \, \mathbf{a}_{1}- y_{25} \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ = $a x_{25} \,\mathbf{\hat{x}}- a y_{25} \,\mathbf{\hat{y}}- c z_{25} \,\mathbf{\hat{z}}$ (8p) S IV
$\mathbf{B_{183}}$ = $y_{25} \, \mathbf{a}_{1}+x_{25} \, \mathbf{a}_{2}- \left(z_{25} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{25} \,\mathbf{\hat{x}}+a x_{25} \,\mathbf{\hat{y}}- c \left(z_{25} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S IV
$\mathbf{B_{184}}$ = $- y_{25} \, \mathbf{a}_{1}- x_{25} \, \mathbf{a}_{2}- \left(z_{25} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{25} \,\mathbf{\hat{x}}- a x_{25} \,\mathbf{\hat{y}}- c \left(z_{25} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8p) S IV

References

  • S. Spiliadis, A. A. Pinkerton, and D. Schwarzenbach, Crystal and molecular structures of [AsPh$_{4}$][Ln(S$_{2}$PMe$_{2}$)$_{4}$](Ln = Ce or Tm) and their comparison with results obtained from paramagnetic nuclear magnetic resonance data in solution, Dalton Trans. pp. 1809–1813 (1982), doi:10.1039/DT9820001809.

Found in

  • F. Hoffmann, M. Sartor, and M. Fröba, The Fascination of Crystals and Symmetry (CAsPh$_{4}$CeS$_{8}$P$_{4}$Me$_{8}$) (2014).

Prototype Generator

aflow --proto=AB32CD4E8_tP184_93_i_16p_af_2p_4p --params=$a,c/a,z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18},x_{19},y_{19},z_{19},x_{20},y_{20},z_{20},x_{21},y_{21},z_{21},x_{22},y_{22},z_{22},x_{23},y_{23},z_{23},x_{24},y_{24},z_{24},x_{25},y_{25},z_{25}$

Species:

Running:

Output: