Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_oF48_70_e_ef-002

This structure originally had the label AB2_oF48_70_g_fg. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/S336
or https://aflow.org/p/AB2_oF48_70_e_ef-002
or PDF Version

Mg$_{2}$Cu ($C_{b}$) Structure: AB2_oF48_70_e_ef-002

Picture of Structure; Click for Big Picture
Prototype CuMg$_{2}$
AFLOW prototype label AB2_oF48_70_e_ef-002
Strukturbericht designation $C_{b}$
ICSD 695334
Pearson symbol oF48
Space group number 70
Space group symbol $Fddd$
AFLOW prototype command aflow --proto=AB2_oF48_70_e_ef-002
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{3}$

Other compounds with this structure

In$_{2}$Ir,  NbSn$_{2}$,  TiBi$_{2}$,  FeGaGe,  SbSnTi


  • Mn$_{2}$B ($D1_{f}$) and CuMg$_{2}$ ($C_{b}$) have the same AFLOW prototype label, AB2_oF48_70_e_ef. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16e) Cu I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16e) Cu I
$\mathbf{B_{3}}$ = $\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16e) Cu I
$\mathbf{B_{4}}$ = $- x_{1} \, \mathbf{a}_{1}+\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16e) Cu I
$\mathbf{B_{5}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16e) Mg I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}b \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16e) Mg I
$\mathbf{B_{7}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16e) Mg I
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}b \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16e) Mg I
$\mathbf{B_{9}}$ = $y_{3} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Mg II
$\mathbf{B_{10}}$ = $- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ (16f) Mg II
$\mathbf{B_{11}}$ = $- y_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16f) Mg II
$\mathbf{B_{12}}$ = $\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ (16f) Mg II

References

  • F. Gingl, P. Selvam, and K. Yvon, Structure refinement of Mg$_{2}$Cu and a comparison of the Mg$_{2}$Cu, Mg$_{2}$Ni and Al$_{2}$Cu structure types, Acta Crystallogr. Sect. B 49, 201–203 (1993), doi:10.1107/S0108768192008723.

Found in

  • V. Vreshch, Crystal Structure of CuMg$_{2}$ (2018). Crystallography online.com.

Prototype Generator

aflow --proto=AB2_oF48_70_e_ef --params=$a,b/a,c/a,x_{1},x_{2},y_{3}$

Species:

Running:

Output: