Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_oC12_36_a_2a-002

This structure originally had the label AB2_oC12_36_a_2a. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/JTSA
or https://aflow.org/p/AB2_oC12_36_a_2a-002
or PDF Version

MoP$_{2}$ Structure: AB2_oC12_36_a_2a-002

Picture of Structure; Click for Big Picture
Prototype MoP$_{2}$
AFLOW prototype label AB2_oC12_36_a_2a-002
ICSD 43331
Pearson symbol oC12
Space group number 36
Space group symbol $Cmc2_1$
AFLOW prototype command aflow --proto=AB2_oC12_36_a_2a-002
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

WP$_{2}$


  • An earlier version of this page had the wrong value for the length $c$. We have corrected that in this version.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $b y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4a) Mo I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) Mo I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4a) P I
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) P I
$\mathbf{B_{5}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4a) P II
$\mathbf{B_{6}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) P II

References


Prototype Generator

aflow --proto=AB2_oC12_36_a_2a --params=$a,b/a,c/a,y_{1},z_{1},y_{2},z_{2},y_{3},z_{3}$

Species:

Running:

Output: