Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C2DE3_hR9_155_a_c_c_b_d-001

This structure originally had the label AB2C2DE3_hR9_155_b_c_c_a_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/Q3TB
or https://aflow.org/p/AB2C2DE3_hR9_155_a_c_c_b_d-001
or PDF Version

KBe$_{2}$BO$_{3}$F$_{2}$ Structure: AB2C2DE3_hR9_155_a_c_c_b_d-001

Picture of Structure; Click for Big Picture
Prototype BBe$_{2}$F$_{2}$KO$_{3}$
AFLOW prototype label AB2C2DE3_hR9_155_a_c_c_b_d-001
ICSD 77277
Pearson symbol hR9
Space group number 155
Space group symbol $R32$
AFLOW prototype command aflow --proto=AB2C2DE3_hR9_155_a_c_c_b_d-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{5}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) B I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) K I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (2c) Be I
$\mathbf{B_{4}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- c x_{3} \,\mathbf{\hat{z}}$ (2c) Be I
$\mathbf{B_{5}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (2c) F I
$\mathbf{B_{6}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- c x_{4} \,\mathbf{\hat{z}}$ (2c) F I
$\mathbf{B_{7}}$ = $y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a y_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}$ (3d) O I
$\mathbf{B_{8}}$ = $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}$ (3d) O I
$\mathbf{B_{9}}$ = $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ = $\frac{1}{2}a y_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}$ (3d) O I

References

  • L. Mei, X. Huang, Y. Want, Q. Wu, and C. Chen, Crystal Structure of KBe$_{2}$BO$_{3}$F$_{2}$, Z. Kristallogr. 210, 93–95 (1995), doi:10.1524/zkri.1995.210.2.93.

Prototype Generator

aflow --proto=AB2C2DE3_hR9_155_a_c_c_b_d --params=$a,c/a,x_{3},x_{4},y_{5}$

Species:

Running:

Output: