AFLOW Prototype: AB2C2DE3_hR9_155_a_c_c_b_d-001
This structure originally had the label AB2C2DE3_hR9_155_b_c_c_a_e. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/Q3TB
or
https://aflow.org/p/AB2C2DE3_hR9_155_a_c_c_b_d-001
or
PDF Version
Prototype | BBe$_{2}$F$_{2}$KO$_{3}$ |
AFLOW prototype label | AB2C2DE3_hR9_155_a_c_c_b_d-001 |
ICSD | 77277 |
Pearson symbol | hR9 |
Space group number | 155 |
Space group symbol | $R32$ |
AFLOW prototype command |
aflow --proto=AB2C2DE3_hR9_155_a_c_c_b_d-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{5}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | B I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | K I |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Be I |
$\mathbf{B_{4}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- c x_{3} \,\mathbf{\hat{z}}$ | (2c) | Be I |
$\mathbf{B_{5}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $c x_{4} \,\mathbf{\hat{z}}$ | (2c) | F I |
$\mathbf{B_{6}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- c x_{4} \,\mathbf{\hat{z}}$ | (2c) | F I |
$\mathbf{B_{7}}$ | = | $y_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a y_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}$ | (3d) | O I |
$\mathbf{B_{8}}$ | = | $- y_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{3}$ | = | $- a y_{5} \,\mathbf{\hat{x}}$ | (3d) | O I |
$\mathbf{B_{9}}$ | = | $y_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a y_{5} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{5} \,\mathbf{\hat{y}}$ | (3d) | O I |