AFLOW Prototype: AB12C3_cI32_229_a_h_b-001
This structure originally had the label AB12C3_cI32_229_a_h_b. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/L6PB
or
https://aflow.org/p/AB12C3_cI32_229_a_h_b-001
or
PDF Version
Prototype | CrFe$_{12}$Ni$_{3}$ |
AFLOW prototype label | AB12C3_cI32_229_a_h_b-001 |
ICSD | none |
Pearson symbol | cI32 |
Space group number | 229 |
Space group symbol | $Im\overline{3}m$ |
AFLOW prototype command |
aflow --proto=AB12C3_cI32_229_a_h_b-001
--params=$a, \allowbreak y_{3}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Cr I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (6b) | Ni I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (6b) | Ni I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6b) | Ni I |
$\mathbf{B_{5}}$ | = | $2 y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ | (24h) | Fe I |
$\mathbf{B_{6}}$ | = | $y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ | (24h) | Fe I |
$\mathbf{B_{7}}$ | = | $- y_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ | (24h) | Fe I |
$\mathbf{B_{8}}$ | = | $- 2 y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ | (24h) | Fe I |
$\mathbf{B_{9}}$ | = | $y_{3} \, \mathbf{a}_{1}+2 y_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ | (24h) | Fe I |
$\mathbf{B_{10}}$ | = | $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ | (24h) | Fe I |
$\mathbf{B_{11}}$ | = | $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ | (24h) | Fe I |
$\mathbf{B_{12}}$ | = | $- y_{3} \, \mathbf{a}_{1}- 2 y_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ | (24h) | Fe I |
$\mathbf{B_{13}}$ | = | $y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+2 y_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ | (24h) | Fe I |
$\mathbf{B_{14}}$ | = | $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ | (24h) | Fe I |
$\mathbf{B_{15}}$ | = | $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ | (24h) | Fe I |
$\mathbf{B_{16}}$ | = | $- y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- 2 y_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ | (24h) | Fe I |