AFLOW Prototype: A7B6C21_oF136_42_a3c_3c_ab3c3e-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/M0MD
or
https://aflow.org/p/A7B6C21_oF136_42_a3c_3c_ab3c3e-001
or
PDF Version
Prototype | Bi$_{7}$Fe$_{3}$O$_{21}$ |
AFLOW prototype label | A7B6C21_oF136_42_a3c_3c_ab3c3e-001 |
ICSD | 155931 |
Pearson symbol | oF136 |
Space group number | 42 |
Space group symbol | $Fmm2$ |
AFLOW prototype command |
aflow --proto=A7B6C21_oF136_42_a3c_3c_ab3c3e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (4a) | Bi I |
$\mathbf{B_{2}}$ | = | $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (4a) | O I |
$\mathbf{B_{3}}$ | = | $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (8b) | O II |
$\mathbf{B_{4}}$ | = | $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8b) | O II |
$\mathbf{B_{5}}$ | = | $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8c) | Bi II |
$\mathbf{B_{6}}$ | = | $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8c) | Bi II |
$\mathbf{B_{7}}$ | = | $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8c) | Bi III |
$\mathbf{B_{8}}$ | = | $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8c) | Bi III |
$\mathbf{B_{9}}$ | = | $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ | = | $b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8c) | Bi IV |
$\mathbf{B_{10}}$ | = | $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ | = | $- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8c) | Bi IV |
$\mathbf{B_{11}}$ | = | $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ | = | $b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8c) | Fe I |
$\mathbf{B_{12}}$ | = | $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ | = | $- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8c) | Fe I |
$\mathbf{B_{13}}$ | = | $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ | = | $b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8c) | Fe II |
$\mathbf{B_{14}}$ | = | $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ | = | $- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8c) | Fe II |
$\mathbf{B_{15}}$ | = | $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ | = | $b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (8c) | Fe III |
$\mathbf{B_{16}}$ | = | $- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ | = | $- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (8c) | Fe III |
$\mathbf{B_{17}}$ | = | $\left(y_{10} + z_{10}\right) \, \mathbf{a}_{1}- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{2}+\left(y_{10} - z_{10}\right) \, \mathbf{a}_{3}$ | = | $b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (8c) | O III |
$\mathbf{B_{18}}$ | = | $- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{1}+\left(y_{10} + z_{10}\right) \, \mathbf{a}_{2}- \left(y_{10} + z_{10}\right) \, \mathbf{a}_{3}$ | = | $- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (8c) | O III |
$\mathbf{B_{19}}$ | = | $\left(y_{11} + z_{11}\right) \, \mathbf{a}_{1}- \left(y_{11} - z_{11}\right) \, \mathbf{a}_{2}+\left(y_{11} - z_{11}\right) \, \mathbf{a}_{3}$ | = | $b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (8c) | O IV |
$\mathbf{B_{20}}$ | = | $- \left(y_{11} - z_{11}\right) \, \mathbf{a}_{1}+\left(y_{11} + z_{11}\right) \, \mathbf{a}_{2}- \left(y_{11} + z_{11}\right) \, \mathbf{a}_{3}$ | = | $- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (8c) | O IV |
$\mathbf{B_{21}}$ | = | $\left(y_{12} + z_{12}\right) \, \mathbf{a}_{1}- \left(y_{12} - z_{12}\right) \, \mathbf{a}_{2}+\left(y_{12} - z_{12}\right) \, \mathbf{a}_{3}$ | = | $b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (8c) | O V |
$\mathbf{B_{22}}$ | = | $- \left(y_{12} - z_{12}\right) \, \mathbf{a}_{1}+\left(y_{12} + z_{12}\right) \, \mathbf{a}_{2}- \left(y_{12} + z_{12}\right) \, \mathbf{a}_{3}$ | = | $- b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (8c) | O V |
$\mathbf{B_{23}}$ | = | $\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ | = | $a x_{13} \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (16e) | O VI |
$\mathbf{B_{24}}$ | = | $\left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{1}+\left(- x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ | = | $- a x_{13} \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (16e) | O VI |
$\mathbf{B_{25}}$ | = | $- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{1}+\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{2}+\left(x_{13} - y_{13} - z_{13}\right) \, \mathbf{a}_{3}$ | = | $a x_{13} \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (16e) | O VI |
$\mathbf{B_{26}}$ | = | $\left(x_{13} + y_{13} + z_{13}\right) \, \mathbf{a}_{1}- \left(x_{13} + y_{13} - z_{13}\right) \, \mathbf{a}_{2}- \left(x_{13} - y_{13} + z_{13}\right) \, \mathbf{a}_{3}$ | = | $- a x_{13} \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ | (16e) | O VI |
$\mathbf{B_{27}}$ | = | $\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ | = | $a x_{14} \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (16e) | O VII |
$\mathbf{B_{28}}$ | = | $\left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{1}+\left(- x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ | = | $- a x_{14} \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (16e) | O VII |
$\mathbf{B_{29}}$ | = | $- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{1}+\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{2}+\left(x_{14} - y_{14} - z_{14}\right) \, \mathbf{a}_{3}$ | = | $a x_{14} \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (16e) | O VII |
$\mathbf{B_{30}}$ | = | $\left(x_{14} + y_{14} + z_{14}\right) \, \mathbf{a}_{1}- \left(x_{14} + y_{14} - z_{14}\right) \, \mathbf{a}_{2}- \left(x_{14} - y_{14} + z_{14}\right) \, \mathbf{a}_{3}$ | = | $- a x_{14} \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ | (16e) | O VII |
$\mathbf{B_{31}}$ | = | $\left(- x_{15} + y_{15} + z_{15}\right) \, \mathbf{a}_{1}+\left(x_{15} - y_{15} + z_{15}\right) \, \mathbf{a}_{2}+\left(x_{15} + y_{15} - z_{15}\right) \, \mathbf{a}_{3}$ | = | $a x_{15} \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (16e) | O VIII |
$\mathbf{B_{32}}$ | = | $\left(x_{15} - y_{15} + z_{15}\right) \, \mathbf{a}_{1}+\left(- x_{15} + y_{15} + z_{15}\right) \, \mathbf{a}_{2}- \left(x_{15} + y_{15} + z_{15}\right) \, \mathbf{a}_{3}$ | = | $- a x_{15} \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (16e) | O VIII |
$\mathbf{B_{33}}$ | = | $- \left(x_{15} + y_{15} - z_{15}\right) \, \mathbf{a}_{1}+\left(x_{15} + y_{15} + z_{15}\right) \, \mathbf{a}_{2}+\left(x_{15} - y_{15} - z_{15}\right) \, \mathbf{a}_{3}$ | = | $a x_{15} \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (16e) | O VIII |
$\mathbf{B_{34}}$ | = | $\left(x_{15} + y_{15} + z_{15}\right) \, \mathbf{a}_{1}- \left(x_{15} + y_{15} - z_{15}\right) \, \mathbf{a}_{2}- \left(x_{15} - y_{15} + z_{15}\right) \, \mathbf{a}_{3}$ | = | $- a x_{15} \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ | (16e) | O VIII |