AFLOW Prototype: A4B2C2DE2_tI22_139_2e_e_d_a_c-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/8C3Q
or
https://aflow.org/p/A4B2C2DE2_tI22_139_2e_e_d_a_c-001
or
PDF Version
Prototype | As$_{4}$Ba$_{2}$Fe$_{2}$OTi$_{2}$ |
AFLOW prototype label | A4B2C2DE2_tI22_139_2e_e_d_a_c-001 |
ICSD | 263018 |
Pearson symbol | tI22 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=A4B2C2DE2_tI22_139_2e_e_d_a_c-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | O I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (4c) | Ti I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (4c) | Ti I |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | Fe I |
$\mathbf{B_{5}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | Fe I |
$\mathbf{B_{6}}$ | = | $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (4e) | As I |
$\mathbf{B_{7}}$ | = | $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (4e) | As I |
$\mathbf{B_{8}}$ | = | $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ | = | $c z_{5} \,\mathbf{\hat{z}}$ | (4e) | As II |
$\mathbf{B_{9}}$ | = | $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ | = | $- c z_{5} \,\mathbf{\hat{z}}$ | (4e) | As II |
$\mathbf{B_{10}}$ | = | $z_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}$ | = | $c z_{6} \,\mathbf{\hat{z}}$ | (4e) | Ba I |
$\mathbf{B_{11}}$ | = | $- z_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}$ | = | $- c z_{6} \,\mathbf{\hat{z}}$ | (4e) | Ba I |