Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B12C3_mP38_7_4a_12a_3a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/S41T
or https://aflow.org/p/A4B12C3_mP38_7_4a_12a_3a-001
or PDF Version

Monoclinic Bi$_{4}$Ti$_{3}$O$_{12}$ $m = 3$ Aurivillius Structure: A4B12C3_mP38_7_4a_12a_3a-001

Picture of Structure; Click for Big Picture
Prototype Bi$_{4}$O$_{12}$Ti$_{3}$
AFLOW prototype label A4B12C3_mP38_7_4a_12a_3a-001
ICSD 38993
Pearson symbol mP38
Space group number 7
Space group symbol $Pc$
AFLOW prototype command aflow --proto=A4B12C3_mP38_7_4a_12a_3a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}$

  • Aurivillius phases are layered tetragonal materials with composition (Me$'_{2}$O$_{2}$)$^{2+}$(Me$_{m-1}$R$_{m}$O$_{3m+1}$)$^{2-}$ (Me$_{m-1}$Me$'_{2}$R$_{m}$O$_{3(m+1)}$), where Me and Me' are metals and R is a transition metal with a charge of +4 or +5. (Subbaro, 1962)
  • (Guo, 2019) describe this system in the base-centered $B1a1$ representation of space group #7. This representation produces a conventional cell that is very close to tetragonal at the cost of doubling the cell size. We used FINDSYM and AFLOW to transform this to the standard $Pc$ setting.
  • (Guo, 2019) used a non-standard representation of the $B1a1$ symmetry operations. The ICSD entry for this structure, as well as the companion structure 38988, used the standard representation. As a result, the CIFs from the ICSD entries do not represent the correct structure.
  • If we allow an uncertainty of 0.5Å in the atomic positions this structure becomes virtually identical with the orthorhombic structure found by (Dorrian, 1971).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Bi I
$\mathbf{B_{2}}$ = $x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{1} + c \left(z_{1} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Bi I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Bi II
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{2} + c \left(z_{2} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Bi II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Bi III
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{3} + c \left(z_{3} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Bi III
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Bi IV
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{4} + c \left(z_{4} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Bi IV
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{10}}$ = $x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{5} + c \left(z_{5} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O II
$\mathbf{B_{12}}$ = $x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{6} + c \left(z_{6} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O II
$\mathbf{B_{13}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O III
$\mathbf{B_{14}}$ = $x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{7} + c \left(z_{7} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O III
$\mathbf{B_{15}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IV
$\mathbf{B_{16}}$ = $x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{8} + c \left(z_{8} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IV
$\mathbf{B_{17}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O V
$\mathbf{B_{18}}$ = $x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{9} + c \left(z_{9} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O V
$\mathbf{B_{19}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VI
$\mathbf{B_{20}}$ = $x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{10} + c \left(z_{10} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VI
$\mathbf{B_{21}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VII
$\mathbf{B_{22}}$ = $x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{11} + c \left(z_{11} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VII
$\mathbf{B_{23}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VIII
$\mathbf{B_{24}}$ = $x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{12} + c \left(z_{12} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O VIII
$\mathbf{B_{25}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IX
$\mathbf{B_{26}}$ = $x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{13} + c \left(z_{13} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O IX
$\mathbf{B_{27}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O X
$\mathbf{B_{28}}$ = $x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{14} + c \left(z_{14} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O X
$\mathbf{B_{29}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XI
$\mathbf{B_{30}}$ = $x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{15} + c \left(z_{15} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XI
$\mathbf{B_{31}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}+c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XII
$\mathbf{B_{32}}$ = $x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{16} + c \left(z_{16} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) O XII
$\mathbf{B_{33}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Ti I
$\mathbf{B_{34}}$ = $x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{17} + c \left(z_{17} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Ti I
$\mathbf{B_{35}}$ = $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Ti II
$\mathbf{B_{36}}$ = $x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{18} + c \left(z_{18} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{18} \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Ti II
$\mathbf{B_{37}}$ = $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $\left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Ti III
$\mathbf{B_{38}}$ = $x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{19} + c \left(z_{19} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (2a) Ti III

References

  • Y.-Y. Guo, A. S. Gibbs, J. M. Perez-Matoc, and P. Lightfoot, Unexpected phase transition sequence in the ferroelectric Bi$_{4}$Ti$_{3}$O$_{12}$, IUCrJ 6, 438–446 (2019), doi:10.1107/S2052252519003804.
  • E. C. Subbarao, A family of ferroelectric bismuth compounds, J. Phys.: Conf. Ser. 23, 665–676 (1962), doi:10.1016/0022-3697(62)90526-7.
  • B. Aurivillius, Mixed oxides with layer lattice. II. Structure of Bi$_{4}$Ti$_{3}$O$_{12}$, Arkiv für Kemi 1, 499–508 (1949).
  • J. F. Dorrian, R. E. Newnham, D. K. Smith, and M. I. Kay, Crystal Structure of Bi$_{4}$Ti$_{3}$O$_{12}$, Ferroelectrics 3, 17–27 (1972), doi:10.1080/00150197108237680.

Prototype Generator

aflow --proto=A4B12C3_mP38_7_4a_12a_3a --params=$a,b/a,c/a,\beta,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18},x_{19},y_{19},z_{19}$

Species:

Running:

Output: