Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC10D2E4_mC76_15_f_e_5f_f_2f-001

This structure originally had the label A2BC10D2E4_mC76_15_f_e_5f_f_2f. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/8J4A
or https://aflow.org/p/A2BC10D2E4_mC76_15_f_e_5f_f_2f-001
or PDF Version

Muscovite (KH$_{2}$Al$_{3}$Si$_{3}$O$_{12}$, $S5_{1}$) Structure: A2BC10D2E4_mC76_15_f_e_5f_f_2f-001

Picture of Structure; Click for Big Picture
Prototype Al$_{3}$H$_{2}$KO$_{12}$Si$_{3}$
AFLOW prototype label A2BC10D2E4_mC76_15_f_e_5f_f_2f-001
Strukturbericht designation $S5_{1}$
Mineral name muscovite
ICSD 17049
Pearson symbol mC76
Space group number 15
Space group symbol $C2/c$
AFLOW prototype command aflow --proto=A2BC10D2E4_mC76_15_f_e_5f_f_2f-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}$

  • The sites we label Si-I and Si-II are actually approximately 75% silicon and 25% aluminum, but trace elements such as manganese can appear on both sites. In addition, the potassium site (K) can be alloyed with small amounts of sodium, and the aluminum site (Al) with iron. These trace elements give muscovite a variety of colors. The sample studied by (Richardson, 1982) was pink.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (4e) K I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (4e) K I
$\mathbf{B_{3}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Al I
$\mathbf{B_{4}}$ = $- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c \left(z_{2} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Al I
$\mathbf{B_{5}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Al I
$\mathbf{B_{6}}$ = $\left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{2} + c \left(z_{2} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Al I
$\mathbf{B_{7}}$ = $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O I
$\mathbf{B_{8}}$ = $- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c \left(z_{3} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O I
$\mathbf{B_{9}}$ = $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O I
$\mathbf{B_{10}}$ = $\left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{3} + c \left(z_{3} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O I
$\mathbf{B_{11}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{12}}$ = $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c \left(z_{4} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{13}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{14}}$ = $\left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{4} + c \left(z_{4} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{15}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O III
$\mathbf{B_{16}}$ = $- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c \left(z_{5} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O III
$\mathbf{B_{17}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O III
$\mathbf{B_{18}}$ = $\left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{5} + c \left(z_{5} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O III
$\mathbf{B_{19}}$ = $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O IV
$\mathbf{B_{20}}$ = $- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c \left(z_{6} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O IV
$\mathbf{B_{21}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O IV
$\mathbf{B_{22}}$ = $\left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{6} + c \left(z_{6} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O IV
$\mathbf{B_{23}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O V
$\mathbf{B_{24}}$ = $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c \left(z_{7} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O V
$\mathbf{B_{25}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O V
$\mathbf{B_{26}}$ = $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{7} + c \left(z_{7} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) O V
$\mathbf{B_{27}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) OH I
$\mathbf{B_{28}}$ = $- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c \left(z_{8} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) OH I
$\mathbf{B_{29}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) OH I
$\mathbf{B_{30}}$ = $\left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{8} + c \left(z_{8} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) OH I
$\mathbf{B_{31}}$ = $\left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si I
$\mathbf{B_{32}}$ = $- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c \left(z_{9} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si I
$\mathbf{B_{33}}$ = $- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si I
$\mathbf{B_{34}}$ = $\left(x_{9} + y_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{9} + c \left(z_{9} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si I
$\mathbf{B_{35}}$ = $\left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si II
$\mathbf{B_{36}}$ = $- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c \left(z_{10} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si II
$\mathbf{B_{37}}$ = $- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si II
$\mathbf{B_{38}}$ = $\left(x_{10} + y_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{10} + c \left(z_{10} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si II

References

  • S. M. Richardson and J. J. W. Richardson, Crystal structure of a pink muscovite from Archer's Post, Kenya: Implications for reverse pleochroism in dioctahedral micas, Am. Mineral. 67, 69–75 (1982).

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A2BC10D2E4_mC76_15_f_e_5f_f_2f --params=$a,b/a,c/a,\beta,y_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10}$

Species:

Running:

Output: