Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B6CD7_tP64_77_2d_6d_d_ab6d-001

This structure originally had the label A2B6CD7_tP64_77_2d_6d_d_ab6d. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/Z918
or https://aflow.org/p/A2B6CD7_tP64_77_2d_6d_d_ab6d-001
or PDF Version

Pinnoite (MgB$_{2}$O[OH]$_{6}$) Structure: A2B6CD7_tP64_77_2d_6d_d_ab6d-001

Picture of Structure; Click for Big Picture
Prototype B$_{2}$H$_{6}$MgO$_{7}$
AFLOW prototype label A2B6CD7_tP64_77_2d_6d_d_ab6d-001
Mineral name pinnoite
ICSD 20662
Pearson symbol tP64
Space group number 77
Space group symbol $P4_2$
AFLOW prototype command aflow --proto=A2B6CD7_tP64_77_2d_6d_d_ab6d-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}$

  • (Genkina, 1983) state that their Wyckoff positions were to be multiplied by $10^{-4}$. This is not the case for the $z$-coordinates and the $x$- and $y$-coordinates of the hydrogen atoms: those coordinates should be multiplied by $10^{-3}$. This confusion led to incorrect hydrogen-oxygen distances in both our original page (Hicks, 2019) and in (Villars, 2016). We believe the current interpretation is correct, as our Mg-O and B-O distances agree with (Genkina, 1983) and all of our O-H bonds are on the order of 1Å. The ICSD CIF also interprets the coordinates in this fashion.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2b) O II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) O II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4d) B I
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4d) B I
$\mathbf{B_{7}}$ = $- y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) B I
$\mathbf{B_{8}}$ = $y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) B I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4d) B II
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4d) B II
$\mathbf{B_{11}}$ = $- y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) B II
$\mathbf{B_{12}}$ = $y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) B II
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4d) H I
$\mathbf{B_{14}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (4d) H I
$\mathbf{B_{15}}$ = $- y_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H I
$\mathbf{B_{16}}$ = $y_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H I
$\mathbf{B_{17}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4d) H II
$\mathbf{B_{18}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4d) H II
$\mathbf{B_{19}}$ = $- y_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H II
$\mathbf{B_{20}}$ = $y_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H II
$\mathbf{B_{21}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4d) H III
$\mathbf{B_{22}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4d) H III
$\mathbf{B_{23}}$ = $- y_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H III
$\mathbf{B_{24}}$ = $y_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H III
$\mathbf{B_{25}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4d) H IV
$\mathbf{B_{26}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4d) H IV
$\mathbf{B_{27}}$ = $- y_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H IV
$\mathbf{B_{28}}$ = $y_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H IV
$\mathbf{B_{29}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4d) H V
$\mathbf{B_{30}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4d) H V
$\mathbf{B_{31}}$ = $- y_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H V
$\mathbf{B_{32}}$ = $y_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H V
$\mathbf{B_{33}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4d) H VI
$\mathbf{B_{34}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4d) H VI
$\mathbf{B_{35}}$ = $- y_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H VI
$\mathbf{B_{36}}$ = $y_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) H VI
$\mathbf{B_{37}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (4d) Mg I
$\mathbf{B_{38}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (4d) Mg I
$\mathbf{B_{39}}$ = $- y_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) Mg I
$\mathbf{B_{40}}$ = $y_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) Mg I
$\mathbf{B_{41}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (4d) O III
$\mathbf{B_{42}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (4d) O III
$\mathbf{B_{43}}$ = $- y_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O III
$\mathbf{B_{44}}$ = $y_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O III
$\mathbf{B_{45}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (4d) O IV
$\mathbf{B_{46}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+c z_{13} \,\mathbf{\hat{z}}$ (4d) O IV
$\mathbf{B_{47}}$ = $- y_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O IV
$\mathbf{B_{48}}$ = $y_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O IV
$\mathbf{B_{49}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $a x_{14} \,\mathbf{\hat{x}}+a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (4d) O V
$\mathbf{B_{50}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $- a x_{14} \,\mathbf{\hat{x}}- a y_{14} \,\mathbf{\hat{y}}+c z_{14} \,\mathbf{\hat{z}}$ (4d) O V
$\mathbf{B_{51}}$ = $- y_{14} \, \mathbf{a}_{1}+x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{14} \,\mathbf{\hat{x}}+a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O V
$\mathbf{B_{52}}$ = $y_{14} \, \mathbf{a}_{1}- x_{14} \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{14} \,\mathbf{\hat{x}}- a x_{14} \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O V
$\mathbf{B_{53}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $a x_{15} \,\mathbf{\hat{x}}+a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (4d) O VI
$\mathbf{B_{54}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $- a x_{15} \,\mathbf{\hat{x}}- a y_{15} \,\mathbf{\hat{y}}+c z_{15} \,\mathbf{\hat{z}}$ (4d) O VI
$\mathbf{B_{55}}$ = $- y_{15} \, \mathbf{a}_{1}+x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{15} \,\mathbf{\hat{x}}+a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O VI
$\mathbf{B_{56}}$ = $y_{15} \, \mathbf{a}_{1}- x_{15} \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{15} \,\mathbf{\hat{x}}- a x_{15} \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O VI
$\mathbf{B_{57}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $a x_{16} \,\mathbf{\hat{x}}+a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (4d) O VII
$\mathbf{B_{58}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $- a x_{16} \,\mathbf{\hat{x}}- a y_{16} \,\mathbf{\hat{y}}+c z_{16} \,\mathbf{\hat{z}}$ (4d) O VII
$\mathbf{B_{59}}$ = $- y_{16} \, \mathbf{a}_{1}+x_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{16} \,\mathbf{\hat{x}}+a x_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O VII
$\mathbf{B_{60}}$ = $y_{16} \, \mathbf{a}_{1}- x_{16} \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{16} \,\mathbf{\hat{x}}- a x_{16} \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O VII
$\mathbf{B_{61}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $a x_{17} \,\mathbf{\hat{x}}+a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (4d) O VIII
$\mathbf{B_{62}}$ = $- x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $- a x_{17} \,\mathbf{\hat{x}}- a y_{17} \,\mathbf{\hat{y}}+c z_{17} \,\mathbf{\hat{z}}$ (4d) O VIII
$\mathbf{B_{63}}$ = $- y_{17} \, \mathbf{a}_{1}+x_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{17} \,\mathbf{\hat{x}}+a x_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O VIII
$\mathbf{B_{64}}$ = $y_{17} \, \mathbf{a}_{1}- x_{17} \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{17} \,\mathbf{\hat{x}}- a x_{17} \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4d) O VIII

References

  • E. A. Genkina and Y. A. Malinovskii, Refinement of the structure of pinnoite: Location of hydrogen atoms, Sov. Phys. Crystallogr. 28, 475–477 (1983). Translated from translated from Kristallografiya.
  • D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. 161, S1–S1011 (2019), doi:10.1016/j.commatsci.2018.10.043.

Found in

  • P. Villars, Mg[B$_{2}$O(OH)$_{6}$] (MgB$_{2}$O[OH]$_{6}$) Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) SpringerMaterials.

Prototype Generator

aflow --proto=A2B6CD7_tP64_77_2d_6d_d_ab6d --params=$a,c/a,z_{1},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17}$

Species:

Running:

Output: