Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3_oF40_43_b_ab-001

This structure originally had the label A2B3_oF40_43_b_ab. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/X02L
or https://aflow.org/p/A2B3_oF40_43_b_ab-001
or PDF Version

Ag$_{2}$O$_{3}$ Structure: A2B3_oF40_43_b_ab-001

Picture of Structure; Click for Big Picture
Prototype Ag$_{2}$O$_{3}$
AFLOW prototype label A2B3_oF40_43_b_ab-001
ICSD 59193
Pearson symbol oF40
Space group number 43
Space group symbol $Fdd2$
AFLOW prototype command aflow --proto=A2B3_oF40_43_b_ab-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

  • This structure is a distortion of the D5$_{5}$ Ag$_{2}$O$_{3}$ structure (A2B3_cP10_224_b_d), although (Standke, 1986) does not seem to be aware of the earlier work. This is most likely closer to the correct structure for Ag$_{2}$O$_{3}$ than the D5$_{5}$ structure is.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (8a) O I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8a) O I
$\mathbf{B_{3}}$ = $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (16b) Ag I
$\mathbf{B_{4}}$ = $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (16b) Ag I
$\mathbf{B_{5}}$ = $- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) Ag I
$\mathbf{B_{6}}$ = $\left(x_{2} + y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) Ag I
$\mathbf{B_{7}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16b) O II
$\mathbf{B_{8}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16b) O II
$\mathbf{B_{9}}$ = $- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) O II
$\mathbf{B_{10}}$ = $\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) O II

References

  • B. Standke and M. Jansen, Darstellung und Kristallstruktur von Ag$_{2}$O$_{3}$, Z. Anorganische und Allgemeine Chemie 535, 39–46 (1986), doi:10.1002/zaac.1986535040.

Prototype Generator

aflow --proto=A2B3_oF40_43_b_ab --params=$a,b/a,c/a,z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: