Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A16B40C12D6E5_cF316_216_eh_e2g2h_h_f_ae-001

This structure originally had the label A16B40C12D6E5_cF316_216_eh_e2g2h_h_f_be. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/ZX49
or https://aflow.org/p/A16B40C12D6E5_cF316_216_eh_e2g2h_h_f_ae-001
or PDF Version

Murataite [(Y,Na)$_{6}$(Zn,Fe)$_{5}$Ti$_{12}$O$_{29}$(O,F)$_{10}$F$_{4}$] Structure: A16B40C12D6E5_cF316_216_eh_e2g2h_h_f_ae-001

Picture of Structure; Click for Big Picture
Prototype F$_{16}$O$_{40}$Ti$_{12}$Y$_{6}$Zn$_{5}$
AFLOW prototype label A16B40C12D6E5_cF316_216_eh_e2g2h_h_f_ae-001
Mineral name murataite
ICSD 81595
Pearson symbol cF316
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=A16B40C12D6E5_cF316_216_eh_e2g2h_h_f_ae-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}$

  • Most of the sites in this structure are somewhat disordered. The nominal composition is given as F$_{16}$O$_{40}$Ti$_{12}$Y$_{6}$Zn$_{5}$ by (Ercit, 1995), but as the CIF in (Downs, 2003) shows, even these labels are not quite correct. In our listing we label each Wyckoff position by the type of atom that has the largest concentration on that site. Following (Downs, 2003):
    • Site Zn-I has the composition Zn$_{0.89}$Si$_{0.11}$.
    • Site F-I has the composition F$_{0.55}$O$_{0.45}$.
    • Site O-I is pure oxygen.
    • Site Zn-II has the composition Zn$_{0.48}$Fe$_{0.25}$Na$_{0.16}$Ti$_{0.11}$.
    • Site Y has the composition Y$_{0.37}$Na$_{0.35}$Mn$_{0.03}$HREE$_{0.25}$, where HREE is a mixture of heavy Rare Earth elements.
    • Site O-II is pure oxygen, but only 8.3333% of the sites are occupied.
    • Site O-III has the composition O$_{0.7}$F$_{0.3}$.
    • Site O-IV is pure oxygen.
    • Site O-V is pure oxygen, but only 87% of the sites are occupied.
    • Site F-II is pure fluorine, but only 33.333% of the sites are occupied.
    • Site Ti has the composition Ti$_{0.76}$Nb$_{0.13}$Na$_{0.11}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Zn I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) F I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- 3 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) F I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}- 3 x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) F I
$\mathbf{B_{5}}$ = $- 3 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) F I
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) O I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) O I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) O I
$\mathbf{B_{9}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) O I
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Zn II
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) Zn II
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Zn II
$\mathbf{B_{13}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) Zn II
$\mathbf{B_{14}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}$ (24f) Y I
$\mathbf{B_{15}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}$ (24f) Y I
$\mathbf{B_{16}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{y}}$ (24f) Y I
$\mathbf{B_{17}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{y}}$ (24f) Y I
$\mathbf{B_{18}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{z}}$ (24f) Y I
$\mathbf{B_{19}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{z}}$ (24f) Y I
$\mathbf{B_{20}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) O II
$\mathbf{B_{21}}$ = $x_{6} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) O II
$\mathbf{B_{22}}$ = $x_{6} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) O II
$\mathbf{B_{23}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) O II
$\mathbf{B_{24}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (24g) O II
$\mathbf{B_{25}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) O II
$\mathbf{B_{26}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) O III
$\mathbf{B_{27}}$ = $x_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) O III
$\mathbf{B_{28}}$ = $x_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) O III
$\mathbf{B_{29}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) O III
$\mathbf{B_{30}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24g) O III
$\mathbf{B_{31}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) O III
$\mathbf{B_{32}}$ = $z_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{33}}$ = $z_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{34}}$ = $\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{35}}$ = $- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{36}}$ = $\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{37}}$ = $- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{38}}$ = $z_{8} \, \mathbf{a}_{1}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{39}}$ = $z_{8} \, \mathbf{a}_{1}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{40}}$ = $z_{8} \, \mathbf{a}_{1}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{41}}$ = $z_{8} \, \mathbf{a}_{1}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{42}}$ = $- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{43}}$ = $\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{44}}$ = $z_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{45}}$ = $z_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{46}}$ = $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{47}}$ = $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{48}}$ = $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{49}}$ = $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{50}}$ = $z_{9} \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{51}}$ = $z_{9} \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{52}}$ = $z_{9} \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{53}}$ = $z_{9} \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{54}}$ = $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{55}}$ = $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) O IV
$\mathbf{B_{56}}$ = $z_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{57}}$ = $z_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{58}}$ = $\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{59}}$ = $- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{60}}$ = $\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{61}}$ = $- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{62}}$ = $z_{10} \, \mathbf{a}_{1}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{63}}$ = $z_{10} \, \mathbf{a}_{1}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{64}}$ = $z_{10} \, \mathbf{a}_{1}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{65}}$ = $z_{10} \, \mathbf{a}_{1}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{66}}$ = $- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{67}}$ = $\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (48h) O V
$\mathbf{B_{68}}$ = $z_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+\left(2 x_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{69}}$ = $z_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}- \left(2 x_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{70}}$ = $\left(2 x_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(2 x_{11} + z_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{71}}$ = $- \left(2 x_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(2 x_{11} - z_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{72}}$ = $\left(2 x_{11} - z_{11}\right) \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{73}}$ = $- \left(2 x_{11} + z_{11}\right) \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{74}}$ = $z_{11} \, \mathbf{a}_{1}+\left(2 x_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(2 x_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{75}}$ = $z_{11} \, \mathbf{a}_{1}- \left(2 x_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(2 x_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{76}}$ = $z_{11} \, \mathbf{a}_{1}+\left(2 x_{11} - z_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{77}}$ = $z_{11} \, \mathbf{a}_{1}- \left(2 x_{11} + z_{11}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{78}}$ = $- \left(2 x_{11} + z_{11}\right) \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+\left(2 x_{11} - z_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (48h) Ti I
$\mathbf{B_{79}}$ = $\left(2 x_{11} - z_{11}\right) \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}- \left(2 x_{11} + z_{11}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (48h) Ti I

References

  • T. S. Ercit and F. C. Hawthorne, Murataite, A UB$_{12}$ derivative structure with condensed Keggin molecules, Can. Mineral. 33, 1233–1229 (1995).
  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=A16B40C12D6E5_cF316_216_eh_e2g2h_h_f_ae --params=$a,x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10},x_{11},z_{11}$

Species:

Running:

Output: