Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A10B_cF44_225_cf_a-001

This structure originally had the label A10B_cF44_225_cf_b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/8F2Q
or https://aflow.org/p/A10B_cF44_225_cf_a-001
or PDF Version

LaH$_{10}$ High-T$_{c}$ Superconductor Structure: A10B_cF44_225_cf_a-001

Picture of Structure; Click for Big Picture
Prototype H$_{10}$La
AFLOW prototype label A10B_cF44_225_cf_a-001
ICSD none
Pearson symbol cF44
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=A10B_cF44_225_cf_a-001
--params=$a, \allowbreak x_{3}$

  • This structure was predicted by (Liu, 2017) as a possible near-room-temperature superconductor at pressures above 200 GPa. Its existence was confirmed by (Geballe, 2018).
  • The lattice constant $a = 4.78$Å is taken from (Liu, 2017) prediction at 300 GPa. (Geballe, 2018) found $a = 5.09$Å at 172 GPa.
  • (Liu, 2017) give a list of hydrogen positions which are not compatible with space group $Fm\overline{3}m$ #225. The positions we assigned are consistent with the work of (Geballe, 2018).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) La I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{7}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+3 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{1}+3 x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) H II
$\mathbf{B_{11}}$ = $3 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) H II

References

  • H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Potential high-T$_{c}$ superconducting lanthanum and yttrium hydrides at high pressure, Proc. Natl. Acad. Sci. 114, 6990–6995 (2017), doi:10.1073/pnas.1704505114.
  • Z. M. Geballe, H. Liu, A. K. Mishra, M. Ahart, M. Somayazulu, Y. Meng, M. Baldini, and R. J. Hemley, Synthesis and Stability of Lanthanum Superhydrides, Angew. Chem. Int. Ed. 57, 688–692 (2018), doi:10.1002/anie.201709970.

Prototype Generator

aflow --proto=A10B_cF44_225_cf_a --params=$a,x_{3}$

Species:

Running:

Output: