AFLOW Prototype: A2B2C3D10E_mP18_10_m_ac_en_3m2n_g-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/8URQ
or
https://aflow.org/p/A2B2C3D10E_mP18_10_m_ac_en_3m2n_g-001
or
PDF Version
Prototype | BFe$_{1.315}$Mg$_{0.56}$O$_{5}$Sn$_{0.1}$ |
AFLOW prototype label | A2B2C3D10E_mP18_10_m_ac_en_3m2n_g-001 |
Mineral name | hulsite |
ICSD | 12133 |
Pearson symbol | mP18 |
Space group number | 10 |
Space group symbol | $P2/m$ |
AFLOW prototype command |
aflow --proto=A2B2C3D10E_mP18_10_m_ac_en_3m2n_g-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak z_{11}$ |
Na$_{2.57}$Sn$_{0.43}$BO$_{5}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Fe I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \cos{\beta} \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ | (1c) | Fe II |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (1e) | Mg I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}\left(a + c \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}c \sin{\beta} \,\mathbf{\hat{z}}$ | (1g) | Sn I |
$\mathbf{B_{5}}$ | = | $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ | = | $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | B I |
$\mathbf{B_{6}}$ | = | $- x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ | = | $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | B I |
$\mathbf{B_{7}}$ | = | $x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{3}$ | = | $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | O I |
$\mathbf{B_{8}}$ | = | $- x_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{3}$ | = | $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | O I |
$\mathbf{B_{9}}$ | = | $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{3}$ | = | $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | O II |
$\mathbf{B_{10}}$ | = | $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{3}$ | = | $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | O II |
$\mathbf{B_{11}}$ | = | $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{3}$ | = | $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | O III |
$\mathbf{B_{12}}$ | = | $- x_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{3}$ | = | $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ | (2m) | O III |
$\mathbf{B_{13}}$ | = | $x_{9} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | Mg II |
$\mathbf{B_{14}}$ | = | $- x_{9} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | Mg II |
$\mathbf{B_{15}}$ | = | $x_{10} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | O IV |
$\mathbf{B_{16}}$ | = | $- x_{10} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | O IV |
$\mathbf{B_{17}}$ | = | $x_{11} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | O V |
$\mathbf{B_{18}}$ | = | $- x_{11} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ | (2n) | O V |