Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB6C4_oC22_65_a_3g_2h-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/6ZPS
or https://aflow.org/p/AB6C4_oC22_65_a_3g_2h-001
or PDF Version

Cr$_{4}$AlB$_{6}$ Structure: AB6C4_oC22_65_a_3g_2h-001

Picture of Structure; Click for Big Picture
Prototype AlB$_{6}$Cr$_{4}$
AFLOW prototype label AB6C4_oC22_65_a_3g_2h-001
ICSD 251807
Pearson symbol oC22
Space group number 65
Space group symbol $Cmmm$
AFLOW prototype command aflow --proto=AB6C4_oC22_65_a_3g_2h-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}$

  • (Ade, 2015) put set the origin so that the aluminum atoms were at the (2c) Wyckoff position. We shifted this so that the aluminum atoms are at the (2a) Wyckoff position, placing an aluminum atom at the origin.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Al I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}$ (4g) B I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (4g) B I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}$ (4g) B II
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (4g) B II
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}$ (4g) B III
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (4g) B III
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Cr I
$\mathbf{B_{9}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Cr I
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Cr II
$\mathbf{B_{11}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Cr II

References

  • M. Ade and H. Hillebrecht, Ternary Borides Cr$_{2}$AlB$_{2}$, Cr$_{2}$AlB$_{4}$, and Cr$_{4}$AlB$_{6}$: The First Members of the Series (CrB$_{2}$)$_{n}$CrAl with $n = 1, 2, 3$ and a Unifying Concept for Ternary Borides as MAB-Phases, Inorg. Chem. 54, 6122–6135 (2015), doi:10.1021/acs.inorgchem.5b00049.
  • D. Hicks, C. Toher, D. C. Ford, F. Rose, C. D. Santo, O. Levy, M. J. Mehl, and S. Curtarolo, AFLOW-XtalFinder: a reliable choice to identify crystalline prototypes 7, 30 (2021), doi:10.1038/s41524-020-00483-4.

Found in

  • H. Zhang, J. Kim, R. Su, P. Richardson, J. Xi, E. Kisi, J. O'Connor, L. Shi, and I. Szlufarska, Defect behavior and radiation tolerance of MAB phases (MoAlB and Fe$_{2}$AlB$_{2}$) with comparison to MAX phases, Acta Mater. 196, 505–515 (2020), doi:10.1016/j.actamat.2020.07.002.

Prototype Generator

aflow --proto=AB6C4_oC22_65_a_3g_2h --params=$a,b/a,c/a,x_{2},x_{3},x_{4},x_{5},x_{6}$

Species:

Running:

Output: