Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B4C4DE2_tP30_136_i_j_i_a_f-001

This structure originally had the label sigma_tP30_136_bf2ij. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/6EHC
or https://aflow.org/p/A4B4C4DE2_tP30_136_i_j_i_a_f-001
or PDF Version

σ-CrFe ($D8_{b}$) Structure: A4B4C4DE2_tP30_136_i_j_i_a_f-001

Picture of Structure; Click for Big Picture
Prototype Cr$_{4}$Fe$_{4}$Ni$_{4}$PdRh$_{2}$
AFLOW prototype label A4B4C4DE2_tP30_136_i_j_i_a_f-001
Strukturbericht designation $D8_{b}$
ICSD none
Pearson symbol tP30
Space group number 136
Space group symbol $P4_2/mnm$
AFLOW prototype command aflow --proto=A4B4C4DE2_tP30_136_i_j_i_a_f-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak z_{5}$

Other compounds with this structure

Al$_{3}$CoNb$_{6}$,  AlCrNb$_{3}$,  AlNb$_{2}$,  AuTa$_{2}$,  Co$_{2}$Mo$_{3}$,  CoV,  Cr$_{2}$Os,  Cr$_{2}$Rus,  Cr$_{8}$Ni$_{5}$W,  CrFe,  CrMn$_{3}$,  Fe$_{3}$Re$_{2}$,  Fe$_{21}$Nb$_{19}$,  FeMo,  FeV,  IrMo$_{2}$,  IrW$_{3}$,  IrZr$_{3}$,  Mn$_{2}$Os,  Mn$_{3}$Re$_{2}$,  Mn$_{45}$Re$_{55}$,  MnTc,  Mo$_{45}$Ru$_{3}$,  MoTc$_{3}$,  Nb$_{2}$Os$_{3}$,  Nb$_{2}$Rh,  Nb$_{3}$Pd$_{2}$,  Ni$_{2}$V$_{3}$,  Ni$_{34}$Si$_{8}$V$_{58}$,  PdTa$_{3}$,  Re$_{3}$Ta$_{2}$ (HT),  Re$_{3}$V,  RhTa$_{2}$,  Ta$_{3}$V$_{7}$,  TaV,  Tc$_{3}$W


  • The atoms in this lattice are completely disordered, that is, the Cr and Fe atoms are distributed randomly on the sites in the unit cell. This seems to be the case for all of the compounds listed below. We have chosen several of the atoms near Fe and Cr in the periodic table to color the above pictures. Except for a shift of the origin, this structure is crystallographically equivalent to $\beta$–U ($A_{b}$).
  • We use the data for a sample of Cr$_{0.48}$Fe$_{0.52}$ annealed at 923K.
  • Previously we had put the atom we labeled Pd on the (2b) site rather than the (2a) site, making the Pd-Rh distance too short. This is the corrected version. We thank Brandon Bocklund for pointing this out.
  • Due to an origin shift, literature may list different Wyckoff designations. For instance, the structure in (Berne, 2001) lists a different Wyckoff sequence, af2ij, however it is structurally equivalent to this prototype and can be verified with AFLOW-XtalFinder.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Pd I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) Pd I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (4f) Rh I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ (4f) Rh I
$\mathbf{B_{5}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) Rh I
$\mathbf{B_{6}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) Rh I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ (8i) Cr I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ (8i) Cr I
$\mathbf{B_{9}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Cr I
$\mathbf{B_{10}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Cr I
$\mathbf{B_{11}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Cr I
$\mathbf{B_{12}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Cr I
$\mathbf{B_{13}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (8i) Cr I
$\mathbf{B_{14}}$ = $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (8i) Cr I
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}$ (8i) Ni I
$\mathbf{B_{16}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}$ (8i) Ni I
$\mathbf{B_{17}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Ni I
$\mathbf{B_{18}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Ni I
$\mathbf{B_{19}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Ni I
$\mathbf{B_{20}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Ni I
$\mathbf{B_{21}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (8i) Ni I
$\mathbf{B_{22}}$ = $- y_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (8i) Ni I
$\mathbf{B_{23}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8j) Fe I
$\mathbf{B_{24}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8j) Fe I
$\mathbf{B_{25}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Fe I
$\mathbf{B_{26}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Fe I
$\mathbf{B_{27}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Fe I
$\mathbf{B_{28}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8j) Fe I
$\mathbf{B_{29}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8j) Fe I
$\mathbf{B_{30}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8j) Fe I

References

  • H. L. Yakel, Atom distributions in sigma phases. I. Fe and Cr atom distributions in a binary sigma phase equilibrated at 1063, 1013 and 923 K, Acta Crystallogr. Sect. B 39, 20–28 (1983), doi:10.1107/S0108768183001974.

Found in

  • P. Villars and L. Calvert, eds., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, Ohio, 1991), vol. 2, chap. , p. 2639, 2nd edn.

Prototype Generator

aflow --proto=A4B4C4DE2_tP30_136_i_j_i_a_f --params=$a,c/a,x_{2},x_{3},y_{3},x_{4},y_{4},x_{5},z_{5}$

Species:

Running:

Output: