AFLOW Prototype: AB6C3_oI20_71_a_el_bf-001
This structure originally had the label AB6C3_oI20_71_a_in_cj. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/6BL9
or
https://aflow.org/p/AB6C3_oI20_71_a_el_bf-001
or
PDF Version
Prototype | AlF$_{6}$Na$_{3}$ |
AFLOW prototype label | AB6C3_oI20_71_a_el_bf-001 |
Mineral name | cryolite |
ICSD | 74211 |
Pearson symbol | oI20 |
Space group number | 71 |
Space group symbol | $Immm$ |
AFLOW prototype command |
aflow --proto=AB6C3_oI20_71_a_el_bf-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak z_{5}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Al I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (2b) | Na I |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (4e) | F I |
$\mathbf{B_{4}}$ | = | $- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (4e) | F I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4f) | Na II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4f) | Na II |
$\mathbf{B_{7}}$ | = | $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8l) | F II |
$\mathbf{B_{8}}$ | = | $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8l) | F II |
$\mathbf{B_{9}}$ | = | $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $b y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (8l) | F II |
$\mathbf{B_{10}}$ | = | $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (8l) | F II |