Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB6C3_oI20_71_a_el_bf-001

This structure originally had the label AB6C3_oI20_71_a_in_cj. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/6BL9
or https://aflow.org/p/AB6C3_oI20_71_a_el_bf-001
or PDF Version

High-Temperature Cryolite (Na$_{3}$AlF$_{6}$) Structure: AB6C3_oI20_71_a_el_bf-001

Picture of Structure; Click for Big Picture
Prototype AlF$_{6}$Na$_{3}$
AFLOW prototype label AB6C3_oI20_71_a_el_bf-001
Mineral name cryolite
ICSD 74211
Pearson symbol oI20
Space group number 71
Space group symbol $Immm$
AFLOW prototype command aflow --proto=AB6C3_oI20_71_a_el_bf-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak z_{5}$

  • Cryolite undergoes a phase transition from the monoclinic $J2_{6}$ phase, space group $P2_{1}/c$ #14, to this orthorhombic phase at 890K. We show structural data taken at 900K.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (2b) Na I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}$ (4e) F I
$\mathbf{B_{4}}$ = $- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (4e) F I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ (4f) Na II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ (4f) Na II
$\mathbf{B_{7}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8l) F II
$\mathbf{B_{8}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8l) F II
$\mathbf{B_{9}}$ = $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $b y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8l) F II
$\mathbf{B_{10}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ (8l) F II

References

  • H. Yang, S. Ghose, and D. M. Hatch, Ferroelastic phase transition in cryolite, Na$_{3}$AlF$_{6}$, a mixed fluoride perovskite: High temperature single crystal X-ray diffraction study and symmetry analysis of the transition mechanism, Phys. Chem. Minerals 19, 528–544 (1993), doi:10.1007/BF00203053.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=AB6C3_oI20_71_a_el_bf --params=$a,b/a,c/a,x_{3},x_{4},y_{5},z_{5}$

Species:

Running:

Output: