Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B_tP12_92_b_a-002

This structure originally had the label A2B_tP12_92_b_a.TeO2. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/6BKE
or https://aflow.org/p/A2B_tP12_92_b_a-002
or PDF Version

Paratellurite (αTeO$_{2}$) Structure: A2B_tP12_92_b_a-002

Picture of Structure; Click for Big Picture
Prototype O$_{2}$Te
AFLOW prototype label A2B_tP12_92_b_a-002
Mineral name paratellurite
ICSD 202792
Pearson symbol tP12
Space group number 92
Space group symbol $P4_12_12$
AFLOW prototype command aflow --proto=A2B_tP12_92_b_a-002
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}$

Other compounds with this structure

$\gamma$-SnF$_{2}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}$ (4a) Te I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4a) Te I
$\mathbf{B_{3}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4a) Te I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4a) Te I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{7}}$ = $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{8}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{9}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{10}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{11}}$ = $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (8b) O I
$\mathbf{B_{12}}$ = $- y_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8b) O I

References

  • P. A. Thomas, The crystal structure and absolute optical chirality of paratellurite, α-TeO$_{2}$, J. Phys. C: Solid State Phys. 21, 4611–4627 (1988), doi:10.1016/S0022-3697(00)00012-3.
  • X. Liu, T. Mashimo1, N. Kawai1, T. Sekine, Z. Zeng, and X. Zhou, Phase transition and equation of state of paratellurite (TeO$_{2}$) under high pressure, Mater. Res. Express 3, 076206 (2016), doi:10.1088/2053-1591/3/7/076206.

Found in

  • M. Ceriotti, F. Pietrucci, and M. Bernasconi, {\em Ab initio} study of the vibrational properties of crystalline TeO$_{2}$: The $\alpha$, $\beta$, and $\gamma$ phases, Phys. Rev. B 73, 104304 (2006), doi:10.1103/PhysRevB.73.104304.

Prototype Generator

aflow --proto=A2B_tP12_92_b_a --params=$a,c/a,x_{1},x_{2},y_{2},z_{2}$

Species:

Running:

Output: