Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C_cF16_216_a_bc_d-001

This structure originally had the label AB2C_cF16_216_b_ad_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/4M8A
or https://aflow.org/p/AB2C_cF16_216_a_bc_d-001
or PDF Version

Hg$_{2}$TiCu Inverse Heusler Structure: AB2C_cF16_216_a_bc_d-001

Picture of Structure; Click for Big Picture
Prototype CuHg$_{2}$Ti
AFLOW prototype label AB2C_cF16_216_a_bc_d-001
Mineral name Inverse Heusler
ICSD 102972
Pearson symbol cF16
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=AB2C_cF16_216_a_bc_d-001
--params=$a$

Other compounds with this structure

Mn$_{2}$CoAl,  Mn$_{2}$CoGa,  Mn$_{2}$CoIn,  Li$_{2}$AgSb,  Li$_{2}$CuSn,  Li$_{2}$CuSb,  Li$_{2}$AgAl,  Li$_{2}$AgIn,  Li$_{2}$AgSb,  Li$_{2}$AgSn,  Li$_{2}$AgPb,  Li$_{2}$AgBi,  Li$_{2}$AuGa,  Li$_{2}$AuIn,  Li$_{2}$AuSb,  Li$_{2}$AuSn,  Li$_{2}$AuPb,  Li$_{2}$AuTl


  • Most of the literature on inverse Heusler compounds identifies Hg$_{2}$TiCu as the prototype structure, however (Villars, 2016) and (Villars, 2016a) use the Li$_{2}$AgSb structure found in (Pauly, 1968) as the prototype.
  • Although it is tempting to use the older paper, we follow the majority and use Hg$_{2}$TiCu as the prototype.
  • The inverse Heusler structure is a variation of the quaternary Heusler structure, where the mercury atoms are on adjacent face-centered cubic sublattices, forming a diamond structure.
  • Contrast this with the standard Heusler ($L1_{2}$) structure, where the like atoms are at second-neighbor positions in the fcc lattice.
  • This structure is also referred to as the XA or X$_\mathrm{a}$ structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) Hg I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (4c) Hg II
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (4d) Ti I

References

  • M. Pušelj and Z. Ban, The Crystal Structure of TiCuHg$_{2}$, Croatica Chemica Acta 41, 79–83 (1969).
  • H. Pauly, A. Weiss, and H. Witte, The Crystal Structure of the Ternary Intermetallic Phases Li$_{2}$EX (E=Cu,Ag,Au; X=Al,Ga,In,Tl,Si,Ge,Sn,Pb,Sb,Bi), Z. Metallkd. 59, 47–58 (1968).
  • P. Villars, Li$_{2}$AgSb Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.).

Found in

  • P. Villars, TiCuHg$_{2}$ (CuHg$_{2}$Ti) Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.).

Prototype Generator

aflow --proto=AB2C_cF16_216_a_bc_d --params=$a$

Species:

Running:

Output: