Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B5_oC32_38_abcd_abcef-001

This structure originally had the label A3B5_oC32_38_abce_abcdf. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/0NF7
or https://aflow.org/p/A3B5_oC32_38_abcd_abcef-001
or PDF Version

Ta$_{3}$Ti$_{5}$ (BCC SQS-16) Structure: A3B5_oC32_38_abcd_abcef-001

Picture of Structure; Click for Big Picture
Prototype Ta$_{3}$Ti$_{5}$
AFLOW prototype label A3B5_oC32_38_abcd_abcef-001
ICSD none
Pearson symbol oC32
Space group number 38
Space group symbol $Amm2$
AFLOW prototype command aflow --proto=A3B5_oC32_38_abcd_abcef-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Ta I
$\mathbf{B_{2}}$ = $- z_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) Ti I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (2b) Ta II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{4} \,\mathbf{\hat{z}}$ (2b) Ti II
$\mathbf{B_{5}}$ = $x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (4c) Ta III
$\mathbf{B_{6}}$ = $- x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (4c) Ta III
$\mathbf{B_{7}}$ = $x_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (4c) Ti III
$\mathbf{B_{8}}$ = $- x_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (4c) Ti III
$\mathbf{B_{9}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4d) Ta IV
$\mathbf{B_{10}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (4d) Ta IV
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4e) Ti IV
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (4e) Ti IV
$\mathbf{B_{13}}$ = $x_{9} \, \mathbf{a}_{1}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8f) Ti V
$\mathbf{B_{14}}$ = $- x_{9} \, \mathbf{a}_{1}- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8f) Ti V
$\mathbf{B_{15}}$ = $x_{9} \, \mathbf{a}_{1}- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8f) Ti V
$\mathbf{B_{16}}$ = $- x_{9} \, \mathbf{a}_{1}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8f) Ti V

References

  • C. Jiang, C. Wolverton, J. Sofo, L.-Q. Chen, and Z.-K. Liu, First-principles study of binary bcc alloys using special quasirandom structures, Phys. Rev. B 69, 214202 (2004), doi:10.1103/PhysRevB.69.214202.
  • T. Chakraborty, J. Rogal, and R. Drautz, Unraveling the composition dependence of the martensitic transformation temperature: A first-principles study of Ti-Ta alloys, Phys. Rev. B 94, 224104 (2016), doi:10.1103/PhysRevB.94.224104.

Prototype Generator

aflow --proto=A3B5_oC32_38_abcd_abcef --params=$a,b/a,c/a,z_{1},z_{2},z_{3},z_{4},x_{5},z_{5},x_{6},z_{6},y_{7},z_{7},y_{8},z_{8},x_{9},y_{9},z_{9}$

Species:

Running:

Output: