Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_cI58_217_ac2g-001

This structure originally had the label A_cI58_217_ac2g. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/SV19
or https://aflow.org/p/A_cI58_217_ac2g-001
or PDF Version

α-Mn ($A12$) Structure: A_cI58_217_ac2g-001

Picture of Structure; Click for Big Picture
Prototype Mn
AFLOW prototype label A_cI58_217_ac2g-001
Strukturbericht designation $A12$
ICSD 42743
Pearson symbol cI58
Space group number 217
Space group symbol $I\overline{4}3m$
AFLOW prototype command aflow --proto=A_cI58_217_ac2g-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}$

  • This is the ground state structure of manganese. The high temperature structure, $\beta$–Mn ($A13$), is stable from 727-1095$^\circ$C and metastable at room temperature (Donohue, 1982).
  • Mg$_{17}$Al$_{12}$ is a binary form of this structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Mn I
$\mathbf{B_{2}}$ = $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8c) Mn II
$\mathbf{B_{3}}$ = $- 2 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8c) Mn II
$\mathbf{B_{4}}$ = $- 2 x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8c) Mn II
$\mathbf{B_{5}}$ = $- 2 x_{2} \, \mathbf{a}_{1}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8c) Mn II
$\mathbf{B_{6}}$ = $\left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+2 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{7}}$ = $- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- 2 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{8}}$ = $\left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{9}}$ = $- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{10}}$ = $2 x_{3} \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{11}}$ = $- 2 x_{3} \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{12}}$ = $\left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{13}}$ = $- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{14}}$ = $\left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{15}}$ = $- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{16}}$ = $- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{17}}$ = $\left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (24g) Mn III
$\mathbf{B_{18}}$ = $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+2 x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{19}}$ = $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- 2 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{20}}$ = $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{21}}$ = $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{22}}$ = $2 x_{4} \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{23}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{24}}$ = $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{25}}$ = $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{26}}$ = $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{27}}$ = $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{28}}$ = $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV
$\mathbf{B_{29}}$ = $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (24g) Mn IV

References

  • J. A. Oberteuffer and J. A. Ibers, A refinement of the atomic and thermal parameters of α-manganese from a single crystal, Acta Crystallogr. Sect. B 26, 1499–1504 (1970), doi:10.1107/S0567740870004399.
  • J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, Malabar, Florida, 1982). Reprint of the 1974 John Wilely & Sons edition.

Prototype Generator

aflow --proto=A_cI58_217_ac2g --params=$a,x_{2},x_{3},z_{3},x_{4},z_{4}$

Species:

Running:

Output: