Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_cF136_227_aeg-001

This structure originally had the label A_cF136_227_aeg. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/U115
or https://aflow.org/p/A_cF136_227_aeg-001
or PDF Version

Si$_{34}$ Clathrate Structure: A_cF136_227_aeg-001

Picture of Structure; Click for Big Picture
Prototype Si
AFLOW prototype label A_cF136_227_aeg-001
ICSD none
Pearson symbol cF136
Space group number 227
Space group symbol $Fd\overline{3}m$
AFLOW prototype command aflow --proto=A_cF136_227_aeg-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak z_{3}$

Other compounds with this structure

Ge (high pressure)


  • Silicon clathrates are open structures of pentagonal dodecahedra connected so that all of the silicon atoms have sp3 bonding. In nature these structures are stabilized by alkali impurity atoms.
  • This structure and the Si$_{46}$ structure are proposed pure silicon clathrate structures.
  • For more information about these structures and their possible stability, see (Adams, 1994).
  • See (Gryko, 2000) for a possible experimental realization of this structure (Si$_{34}$Na$_{x}$, were x is very small).
  • We have used the fact that all vectors of the form $(0,\pm a/2,\pm a/2)$, $(\pm a/2,0,\pm a/2)$, and $(\pm a/2,\pm a/2,0)$ are primitive vectors of the face-centered cubic lattice to simplify the positions of some atoms in both lattice and Cartesian coordinates.
  • (Dong, 1999) study a similar, but not identical structure (ICSD 56271), and (Schwarz, 2008) find a similar high-pressure phase of germanium (ICSD 245948).

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (8a) Si I
$\mathbf{B_{2}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (8a) Si I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (32e) Si II
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(3 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (32e) Si II
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}- \left(3 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Si II
$\mathbf{B_{6}}$ = $- \left(3 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Si II
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(3 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (32e) Si II
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (32e) Si II
$\mathbf{B_{9}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(3 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Si II
$\mathbf{B_{10}}$ = $\left(3 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (32e) Si II
$\mathbf{B_{11}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+\left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{12}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- \left(2 x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{13}}$ = $\left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(2 x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{14}}$ = $- \left(2 x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{15}}$ = $\left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{16}}$ = $- \left(2 x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{17}}$ = $z_{3} \, \mathbf{a}_{1}+\left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(2 x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{18}}$ = $z_{3} \, \mathbf{a}_{1}- \left(2 x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{19}}$ = $z_{3} \, \mathbf{a}_{1}+\left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{20}}$ = $z_{3} \, \mathbf{a}_{1}- \left(2 x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{21}}$ = $- \left(2 x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+\left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{22}}$ = $\left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}- \left(2 x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{23}}$ = $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\left(2 x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{24}}$ = $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- \left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{25}}$ = $- \left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(2 x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{26}}$ = $\left(2 x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{27}}$ = $- \left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+\left(2 x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{28}}$ = $\left(2 x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- \left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{29}}$ = $- z_{3} \, \mathbf{a}_{1}- \left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{30}}$ = $- z_{3} \, \mathbf{a}_{1}+\left(2 x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{31}}$ = $- z_{3} \, \mathbf{a}_{1}- \left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(2 x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{32}}$ = $- z_{3} \, \mathbf{a}_{1}+\left(2 x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{33}}$ = $\left(2 x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (96g) Si III
$\mathbf{B_{34}}$ = $- \left(2 x_{3} - z_{3}\right) \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96g) Si III

References

  • G. B. Adams, M. O'Keeffe, A. A. Demkov, O. F. Sankey, and Y.-M. Huang, Wide-band-gap Si in open fourfold-coordinated clathrate structures, Phys. Rev. B 49, 8048–8053 (1994), doi:10.1103/PhysRevB.49.8048.
  • J. Gryko, P. F. McMillan, R. F. Marzke, G. K. Ramachandran, D. Patton, S. K. Deb, and O. F. Sankey, Low-density framework form of crystalline silicon with a wide optical band gap, Phys. Rev. B 62, R7707–7710 (2000), doi:10.1103/PhysRevB.62.R7707.
  • J. Dong, O. F. Sankey, and G. Kern, Theoretical study of the vibrational modes and their pressure dependence in the pure clathrate-II silicon framework, Phys. Rev. B 60, 950–958 (1999), doi:10.1103/PhysRevB.60.950.
  • U. Schwarz, A. Wosylus, B. Böhme, M. Baitinger, M. Hanfland, and Y. Grin, A 3D Network of Four-Bonded Germanium: A Link between Open and Dense, Angew. Chem. Int. Ed. 47, 6790–6793 (2008), doi:10.1002/anie.200800914.

Prototype Generator

aflow --proto=A_cF136_227_aeg --params=$a,x_{2},x_{3},z_{3}$

Species:

Running:

Output: