AFLOW Prototype: ABCD_cF16_216_a_b_c_d-001
This structure originally had the label ABCD_cF16_216_c_d_b_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/4CEX
or
https://aflow.org/p/ABCD_cF16_216_a_b_c_d-001
or
PDF Version
Prototype | AuLiMgSn |
AFLOW prototype label | ABCD_cF16_216_a_b_c_d-001 |
ICSD | 16477 |
Pearson symbol | cF16 |
Space group number | 216 |
Space group symbol | $F\overline{4}3m$ |
AFLOW prototype command |
aflow --proto=ABCD_cF16_216_a_b_c_d-001
--params=$a$ |
AuLiMgSn, LiMgPdSn, LiMgPtSn, CuMg$_{2}$Ti, AuBiLi$_{2}$, AgLi$_{2}$Sn, AuLi$_{2}$Sn, CuHfHg$_{2}$, MnPd$_{2}$Sn
quaternary-Heuslerstructure can be considered as the parent of a wide variety of structures, depending on the occupancy of the (4a), (4b), (4c), and (4d) Wyckoff positions. Consider atoms of type A, B, C, D, distributed in this structure. We can get:
Structure | Strukturbericht | AFLOW Label | (4a) | (4b) | (4c) | (4d) |
simple cubic | A$_h$ | A_cP1_221_a | A | A | - | - |
fcc | A1 | A_cF4_225_a | A | - | - | - |
bcc | A2 | A_cI2_229_a | A | A | - | - |
bcc | A2 | A_cI2_229_a | A | A | A | A |
diamond | A4 | A_cF8_227_a | A | - | A | - |
NaCl | B1 | AB_cF8_225_a_b | A | B | - | - |
CsCl | B2 | AB_cP2_221_a_b | A | A | B | B |
ZnS (zincblende) | B3 | AB_cF8_216_c_a | A | - | B | - |
BiF$_{3}$ | D0$_3$ | AB3_cF16_225_a_bc | A | B | B | B |
NaTl | B32 | AB_cF16_227_a_b | A | B | A | B |
Fluorite | C1 | AB2_cF12_225_a_c | A | - | B | B |
half-Heusler | C1$_{b}$ | ABC_cF12_216_a_b_c | A | B | C | - |
Heusler | L2$_1$ | AB2C_cF16_225_a_c_b | A | C | B | B |
Inverse-Heusler | AB2C_cF16_216_a_bc_d | A | B | B | C | |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Au I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (4b) | Li I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (4c) | Mg I |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (4d) | Sn I |