Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB9C3_cI208_220_c_3e_e-001

This structure originally had the label AB9C3_cI208_220_c_3e_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/2BX1
or https://aflow.org/p/AB9C3_cI208_220_c_3e_e-001
or PDF Version

Al(PO$_{3}$)$_{3}$ ($G5_{2}$) Structure: AB9C3_cI208_220_c_3e_e-001

Picture of Structure; Click for Big Picture
Prototype AlO$_{9}$P$_{3}$
AFLOW prototype label AB9C3_cI208_220_c_3e_e-001
Strukturbericht designation $G5_{2}$
ICSD 26759
Pearson symbol cI208
Space group number 220
Space group symbol $I\overline{4}3d$
AFLOW prototype command aflow --proto=AB9C3_cI208_220_c_3e_e-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $2 x_{1} \, \mathbf{a}_{1}+2 x_{1} \, \mathbf{a}_{2}+2 x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16c) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16c) Al I
$\mathbf{B_{3}}$ = $- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16c) Al I
$\mathbf{B_{4}}$ = $- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16c) Al I
$\mathbf{B_{5}}$ = $\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Al I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- 2 x_{1} \, \mathbf{a}_{3}$ = $- a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Al I
$\mathbf{B_{7}}$ = $- 2 x_{1} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Al I
$\mathbf{B_{8}}$ = $- 2 x_{1} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16c) Al I
$\mathbf{B_{9}}$ = $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{10}}$ = $\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{11}}$ = $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{12}}$ = $- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{13}}$ = $\left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{14}}$ = $- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{15}}$ = $\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{16}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{17}}$ = $\left(x_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{18}}$ = $- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{19}}$ = $- \left(x_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{20}}$ = $\left(x_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{21}}$ = $\left(x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{22}}$ = $\left(- x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{23}}$ = $- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{24}}$ = $\left(x_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{25}}$ = $\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{26}}$ = $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{27}}$ = $\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{28}}$ = $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{29}}$ = $\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{30}}$ = $- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{31}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{32}}$ = $\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O I
$\mathbf{B_{33}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{34}}$ = $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{35}}$ = $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{36}}$ = $- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{37}}$ = $\left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{38}}$ = $- \left(x_{3} + y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{39}}$ = $\left(- x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{40}}$ = $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{41}}$ = $\left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{42}}$ = $- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{43}}$ = $- \left(x_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{44}}$ = $\left(x_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{45}}$ = $\left(x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{46}}$ = $\left(- x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{47}}$ = $- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{48}}$ = $\left(x_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{49}}$ = $\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{50}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{51}}$ = $\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{52}}$ = $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{53}}$ = $\left(x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{54}}$ = $- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{55}}$ = $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{56}}$ = $\left(x_{3} - y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O II
$\mathbf{B_{57}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{58}}$ = $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{59}}$ = $\left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{60}}$ = $- \left(y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{61}}$ = $\left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{62}}$ = $- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{63}}$ = $\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{64}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{65}}$ = $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{66}}$ = $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{67}}$ = $- \left(x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{68}}$ = $\left(x_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{69}}$ = $\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{70}}$ = $\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{71}}$ = $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{72}}$ = $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{73}}$ = $\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{74}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{75}}$ = $\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{76}}$ = $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{77}}$ = $\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{78}}$ = $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{79}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{80}}$ = $\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) O III
$\mathbf{B_{81}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{82}}$ = $\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{83}}$ = $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{84}}$ = $- \left(y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{85}}$ = $\left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{86}}$ = $- \left(x_{5} + y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{87}}$ = $\left(- x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{5} \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{88}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a y_{5} \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{89}}$ = $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{90}}$ = $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{91}}$ = $- \left(x_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{92}}$ = $\left(x_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} + z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{93}}$ = $\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{94}}$ = $\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{95}}$ = $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{96}}$ = $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{97}}$ = $\left(y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{98}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{99}}$ = $\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{100}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{101}}$ = $\left(x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{102}}$ = $- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{103}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(y_{5} - z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I
$\mathbf{B_{104}}$ = $\left(x_{5} - y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (48e) P I

References

  • L. Pauling and J. Sherman, The Crystal Structure of Aluminum Metaphosphate, Al(PO$_{3}$)$_{3}$, Z. Krystallogr. 96, 481–487 (1937).

Found in

  • H. van der Meer, The crystal structure of a monoclinic form of aluminium metaphosphate, Al(PO$_{3}$)$_{3}$, Acta Crystallogr. Sect. B 32, 2423–2426 (1976), doi:10.1107/S0567740876007899.

Prototype Generator

aflow --proto=AB9C3_cI208_220_c_3e_e --params=$a,x_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5}$

Species:

Running:

Output: