Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB7_cF32_225_a_bd-001

This structure originally had the label AB7_cF32_225_b_ad. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/3APN
or https://aflow.org/p/AB7_cF32_225_a_bd-001
or PDF Version

$L1_{a}$ (disputed CuPt$_{3}$ Structure): AB7_cF32_225_a_bd-001

Picture of Structure; Click for Big Picture
Prototype CuPt$_{3}$
AFLOW prototype label AB7_cF32_225_a_bd-001
Strukturbericht designation $L1_{a}$
ICSD none
Pearson symbol cF32
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=AB7_cF32_225_a_bd-001
--params=$a$

  • According to (Tang, 1951), the (24d) sites have the composition Pt$_{0.8}$Cu$_{0.2}$ in stoichiometric CuPt$_{3}$. Here we use Pt to specify the atoms on this site.
  • (Tang, 1951) states that the crystal structure of CuPt$_{3}$ must be cubic, but (Mshumi, 2014) argue that it is orthorhombic, and is in fact the $L1_{3}$ structure.
  • (Smithells, 1955) gave this structure the $L1_{a}$ designation as part of his extension of the original Strukturbericht labels. He does note that an alternative orthorhombic structure had been proposed.
  • (Smithells, 1955) assigns this structure to space group $F432$ #209, but the positions given by (Tang, 1951) are also consistent with $Fm\overline{3}m$ #225, so we assign this structure to the higher symmetry space group.
  • (Tang, 1951) does not give the lattice constant, so we use the value estimated by (Smithells, 1955).
  • The Wyckoff positions are identical to those of the Ca$_{7}$Ge structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) Pt I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Pt II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Pt II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Pt II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24d) Pt II
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (24d) Pt II
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24d) Pt II

References

  • Y.-C. Tang, A cubic structure for the phase Pt$_{3}$Cu, Acta Cryst. 4, 377–378 (1951), doi:10.1107/S0365110X51001185.
  • C. J. Smithells, Metals Reference Book (Butterworths Scientific, London, 1955), second edn.

Found in

  • C. Mshumi, C. I. Lang, L. R. Richey, K. C. Erb, C. W. Rosenbrock, L. J.Nelson, R. R. Vanfleet, H. T. Stokes, B. J. Campbell, and G. L. W. Hart, Revisiting the CuPt$_{3}$ prototype and the $L1_{3}$ structure, Acta Mat. 73, 326–336 (2014), doi:10.1016/j.actamat.2014.03.029.

Prototype Generator

aflow --proto=AB7_cF32_225_a_bd --params=$a$

Species:

Running:

Output: