$L1_a$ (disputed CuPt₃ Structure): AB7_cF32_225_a_bd-001

This structure originally had the label AB7_cF32_225_b_ad. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/3APN

 $https://aflow.org/p/AB7_cF32_225_a_bd-001$

Prototype CuPt₃

AFLOW prototype label AB7_cF32_225_a_bd-001

Space group number 225

Space group symbol $Fm\overline{3}m$

AFLOW prototype command aflow --proto=AB7_cF32_225_a_bd-001

--params=a

- According to (Tang, 1951), the (24d) sites have the composition Pt_{0.8}Cu_{0.2} in stoichiometric CuPt₃. Here we use "Pt" to specify the atoms on this site.
- (Tang, 1951) states that the crystal structure of CuPt₃ must be cubic, but (Mshumi, 2014) argue that it is orthorhombic, and is in fact the L1₃ structure.
- (Smithells, 1955) gave this structure the $L1_a$ designation as part of his extension of the original *Strukturbericht* labels. He does note that an alternative orthorhombic structure had been proposed.
- (Smithells, 1955) assigns this structure to space group F432 # 209, but the positions given by (Tang, 1951) are also consistent with $Fm\overline{3}m \# 225$, so we assign this structure to the higher symmetry space group.

- (Tang, 1951) does not give the lattice constant, so we use the value estimated by (Smithells, 1955).
- The Wyckoff positions are identical to those of the Ca₇Ge structure.

Face-centered Cubic primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{y}} + \frac{1}{2}a\,\hat{\mathbf{z}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}a\,\hat{\mathbf{z}}$$

$$\mathbf{a_3} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}a\,\hat{\mathbf{y}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	0	=	0	(4a)	Cu I
$\mathbf{B_2}$	=	$rac{1}{2}{f a}_1 + rac{1}{2}{f a}_2 + rac{1}{2}{f a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{1}{2}a\hat{\mathbf{y}} + \frac{1}{2}a\hat{\mathbf{z}}$	(4b)	Pt I
B_3	=	$rac{1}{2}\mathbf{a}_1$	=	$rac{1}{4}a\mathbf{\hat{y}}+rac{1}{4}a\mathbf{\hat{z}}$	(24d)	Pt II
${f B_4}$	=	$rac{1}{2}\mathbf{a}_2+rac{1}{2}\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{1}{4}a\hat{\mathbf{y}} + \frac{1}{4}a\hat{\mathbf{z}}$	(24d)	Pt II
${f B_5}$	=	$rac{1}{2}\mathbf{a}_2$	=	$\frac{1}{4}a\hat{\mathbf{x}} + \frac{1}{4}a\hat{\mathbf{z}}$	(24d)	Pt II
${f B_6}$	=	$rac{1}{2}\mathbf{a}_1+rac{1}{2}\mathbf{a}_3$	=	$\frac{1}{4}a\hat{\mathbf{x}} + \frac{1}{2}a\hat{\mathbf{y}} + \frac{1}{4}a\hat{\mathbf{z}}$	(24d)	Pt II
$\mathbf{B_7}$	=	$rac{1}{2}\mathbf{a}_3$	=	$\frac{1}{4}a\mathbf{\hat{x}} + \frac{1}{4}a\mathbf{\hat{y}}$	(24d)	Pt II
$\mathbf{B_8}$	=	$rac{1}{2}\mathbf{a}_1+rac{1}{2}\mathbf{a}_2$	=	$\frac{1}{4}a\hat{\mathbf{x}} + \frac{1}{4}a\hat{\mathbf{y}} + \frac{1}{2}a\hat{\mathbf{z}}$	(24d)	Pt II

References

- $[1] \ \ Y.-C. \ \ Tang, \ A \ \ cubic \ structure \ for \ the \ phase \ Pt_3 Cu, \ Acta \ Cryst. \ \textbf{4}, \ 377-378 \ (1951), \ doi:10.1107/S0365110X51001185.$
- [2] C. J. Smithells, Metals Reference Book (Butterworths Scientific, London, 1955), second edn.

Found in

[1] C. Mshumi, C. I. Lang, L. R. Richey, K. C. Erb, C. W. Rosenbrock, L. J.Nelson, R. R. Vanfleet, H. T. Stokes, B. J. Campbell, and G. L. W. Hart, *Revisiting the CuPt*₃ prototype and the L1₃ structure, Acta Mat. **73**, 326–336 (2014), doi:10.1016/j.actamat.2014.03.029.