$L 1_{a}$ (disputed CuPt_{3} Structure): AB7_cF32_225_a_bd-001

This structure originally had the label AB7_cF32_225_b_ad. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comput. Mater. Sci. 199, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

- According to (Tang, 1951), the (24d) sites have the composition $\mathrm{Pt}_{0.8} \mathrm{Cu}_{0.2}$ in stoichiometric CuPt_{3}. Here we use "Pt" to specify the atoms on this site.
- (Tang, 1951) states that the crystal structure of CuPt_{3} must be cubic, but (Mshumi, 2014) argue that it is orthorhombic, and is in fact the $L 1_{3}$ structure.
- (Smithells, 1955) gave this structure the $L 1_{a}$ designation as part of his extension of the original Strukturbericht labels. He does note that an alternative orthorhombic structure had been proposed.
- (Smithells, 1955) assigns this structure to space group F432 \#209, but the positions given by (Tang, 1951) are also consistent with $F m \overline{3} m \# 225$, so we assign this structure to the higher symmetry space group.
- (Tang, 1951) does not give the lattice constant, so we use the value estimated by (Smithells, 1955).
- The Wyckoff positions are identical to those of the $\mathrm{Ca}_{7} \mathrm{Ge}$ structure,

Face-centered Cubic primitive vectors

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}=\frac{1}{2} a \hat{\mathbf{y}}+\frac{1}{2} a \hat{\mathbf{z}} \\
& \mathbf{a}_{\mathbf{2}}=\frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} a \hat{\mathbf{z}} \\
& \mathbf{a}_{\mathbf{3}}=\frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} a \hat{\mathbf{y}}
\end{aligned}
$$

$a 32$
k
$a 1$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_{1}	$=$	0	$=$	0	(4a)	Cu I
B_{2}	$=$	$\frac{1}{2} \mathbf{a}_{1}+\frac{1}{2} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} a \hat{\mathbf{y}}+\frac{1}{2} a \hat{\mathbf{z}}$	(4b)	Pt I
B_{3}	$=$	$\frac{1}{2} \mathbf{a}_{1}$	$=$	$\frac{1}{4} a \hat{\mathbf{y}}+\frac{1}{4} a \hat{\mathbf{z}}$	(24d)	Pt II
B_{4}	$=$	$\frac{1}{2} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{4} a \hat{\mathbf{y}}+\frac{1}{4} a \hat{\mathbf{z}}$	(24d)	Pt II
B_{5}	$=$	$\frac{1}{2} \mathbf{a}_{2}$	$=$	$\frac{1}{4} a \hat{\mathbf{x}}+\frac{1}{4} a \hat{\mathbf{z}}$	(24d)	Pt II
B_{6}	$=$	$\frac{1}{2} \mathbf{a}_{1}+\frac{1}{2} \mathbf{a}_{3}$	$=$	$\frac{1}{4} a \hat{\mathbf{x}}+\frac{1}{2} a \hat{\mathbf{y}}+\frac{1}{4} a \hat{\mathbf{z}}$	(24d)	Pt II
B_{7}	$=$	$\frac{1}{2} \mathbf{a}_{3}$	$=$	$\frac{1}{4} a \hat{\mathbf{x}}+\frac{1}{4} a \hat{\mathbf{y}}$	(24d)	Pt II
B_{8}	$=$	$\frac{1}{2} \mathbf{a}_{1}+\frac{1}{2} \mathbf{a}_{2}$	$=$	$\frac{1}{4} a \hat{\mathbf{x}}+\frac{1}{4} a \hat{\mathbf{y}}+\frac{1}{2} a \hat{\mathbf{z}}$	(24d)	Pt II

References

[1] Y.-C. Tang, A cubic structure for the phase $P t_{3} C u$, Acta Cryst. 4, 377-378 (1951), doi:10.1107/S0365110X51001185
[2] C. J. Smithells, Metals Reference Book (Butterworths Scientific, London, 1955), second edn.

Found in

[1] C. Mshumi, C. I. Lang, L. R. Richey, K. C. Erb, C. W. Rosenbrock, L. J.Nelson, R. R. Vanfleet, H. T. Stokes, B. J. Campbell, and G. L. W. Hart, Revisiting the CuPt t_{3} prototype and the $L 1_{3}$ structure, Acta Mat. 73, 326-336 (2014), doi 10.1016/j.actamat.2014.03.029.

