Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB5_cF24_216_a_ce-001

This structure originally had the label AB5_cF24_216_a_ce. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/3454
or https://aflow.org/p/AB5_cF24_216_a_ce-001
or PDF Version

AuBe$_{5}$ ($C15_{b}$) Structure: AB5_cF24_216_a_ce-001

Picture of Structure; Click for Big Picture
Prototype AuBe$_{5}$
AFLOW prototype label AB5_cF24_216_a_ce-001
Strukturbericht designation $C15_{b}$
ICSD 611643
Pearson symbol cF24
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=AB5_cF24_216_a_ce-001
--params=$a, \allowbreak x_{3}$

Other compounds with this structure

CaAu$_{5}$,  CoBe$_{5}$,  HfNi$_{5}$,  PdBe$_{5}$,  UCu$_{5}$,  UNi$_{5}$,  UPt$_{5}$,  ZrNi$_{5}$,  CaNi$_{4}$Mg,  CeNi$_{4}$Mg,  DyNi$_{4}$Mg,  ErNi$_{4}$Mg,  HoNi$_{4}$Mg,  InCu$_{4}$Mg,  LaNi$_{4}$Mg,  LuNi$_{4}$Mg,  NdNi$_{4}$Mg,  PrNi$_{4}$Mg,  ScNi$_{4}$Mg,  SmNi$_{4}$Mg,  SnCu$_{4}$Mg,  SnCu$_{4}$Mn,  TbNi$_{4}$Mg,  TmNi$_{4}$Mg,  YNi$_{4}$Mg,  YbNi$_{4}$Mg


  • The lattice constant for this structure is taken from (Batchelder, 1958), which does not give the internal coordinate for the (16c) site. However, (Baenziger, 1950) assumes that uranium compounds of this type have an internal parameter $x_{3} ≈ 5/8$. (Pearson, 1958) uses this to infer a value of $x_{3} ≈ 5/8$ here as well.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Au I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (4c) Be I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Be II
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) Be II
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Be II
$\mathbf{B_{6}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) Be II

References

  • N. C. Baenziger, R. E. Rundle, A. I. Snow, and A. S. Wilson, Compounds of uranium with the transition metals of the first long period, Acta Cryst. 3, 34–40 (1950), doi:10.1107/S0365110X50000082.
  • F. W. von Batchelder and R. F. Raeuchle, The tetragonal MBe$_{12}$ structure of silver, palladium, platinum and gold, Acta Cryst. 11, 122 (1958), doi:10.1107/S0365110X58000323.

Found in

  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Volume 2, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 8 (Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1967).

Prototype Generator

aflow --proto=AB5_cF24_216_a_ce --params=$a,x_{3}$

Species:

Running:

Output: