AFLOW Prototype: AB5_cF24_216_a_ce-001
This structure originally had the label AB5_cF24_216_a_ce. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/3454
or
https://aflow.org/p/AB5_cF24_216_a_ce-001
or
PDF Version
Prototype | AuBe$_{5}$ |
AFLOW prototype label | AB5_cF24_216_a_ce-001 |
Strukturbericht designation | $C15_{b}$ |
ICSD | 611643 |
Pearson symbol | cF24 |
Space group number | 216 |
Space group symbol | $F\overline{4}3m$ |
AFLOW prototype command |
aflow --proto=AB5_cF24_216_a_ce-001
--params=$a, \allowbreak x_{3}$ |
CaAu$_{5}$, CoBe$_{5}$, HfNi$_{5}$, PdBe$_{5}$, UCu$_{5}$, UNi$_{5}$, UPt$_{5}$, ZrNi$_{5}$, CaNi$_{4}$Mg, CeNi$_{4}$Mg, DyNi$_{4}$Mg, ErNi$_{4}$Mg, HoNi$_{4}$Mg, InCu$_{4}$Mg, LaNi$_{4}$Mg, LuNi$_{4}$Mg, NdNi$_{4}$Mg, PrNi$_{4}$Mg, ScNi$_{4}$Mg, SmNi$_{4}$Mg, SnCu$_{4}$Mg, SnCu$_{4}$Mn, TbNi$_{4}$Mg, TmNi$_{4}$Mg, YNi$_{4}$Mg, YbNi$_{4}$Mg
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Au I |
$\mathbf{B_{2}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (4c) | Be I |
$\mathbf{B_{3}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (16e) | Be II |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (16e) | Be II |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (16e) | Be II |
$\mathbf{B_{6}}$ | = | $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (16e) | Be II |