Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4C8_cF52_216_a_e_2e-001

This structure originally had the label AB4C8_cF52_216_a_e_2e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/BEEG
or https://aflow.org/p/AB4C8_cF52_216_a_e_2e-001
or PDF Version

Room Temperature GaMo$_{4}$S$_{8}$ Structure: AB4C8_cF52_216_a_e_2e-001

Picture of Structure; Click for Big Picture
Prototype GaMo$_{4}$S$_{8}$
AFLOW prototype label AB4C8_cF52_216_a_e_2e-001
ICSD 49566
Pearson symbol cF52
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=AB4C8_cF52_216_a_e_2e-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}$

Other compounds with this structure

AlMo$_{4}$S$_{8}$,  Co(Mo$_{2}$Re$_{2}$)S$_{8}$,  Fe(Mo$_{2}$Re$_{2}$)S$_{8}$,  GaMo$_{4}$S$_{4}$Te$_{4}$,  GaMo$_{4}$S$_{8}$,  GaMo$_{4}$Se$_{4}$Te$_{4}$,  GaMo$_{4}$Se$_{8}$,  GaMo$_{4}$Te$_{8}$,  GaNb$_{4}$S$_{8}$,  GaNb$_{4}$Se$_{8}$,  GaNb$_{4}$Te$_{8}$,  GaRe$_{4}$S$_{8}$,  GaRe$_{4}$Se$_{8}$,  GaRe$_{4}$Te$_{8}$,  GaTa$_{4}$S$_{8}$,  GaTa$_{4}$Se$_{8}$,  GaTa$_{4}$Te$_{8}$,  GaV$_{4}$S$_{8}$,  GaV$_{4}$Se$_{8}$,  GaV$_{4}$Te$_{8}$,  GeMo$_{4}$S$_{8}$,  GeMo$_{4}$Se$_{8}$,  GeMo$_{4}$Te$_{8}$,  GeNb$_{4}$S$_{8}$,  GeNb$_{4}$Se$_{8}$,  GeNb$_{4}$Te$_{8}$,  GeRe$_{4}$S$_{8}$,  GeRe$_{4}$Se$_{8}$,  GeRe$_{4}$Te$_{8}$,  GeTa$_{4}$S$_{8}$,  GeTa$_{4}$Se$_{8}$,  GeTa$_{4}$Te$_{8}$,  GeV$_{4}$S$_{8}$,  GeV$_{4}$Se$_{8}$,  GeV$_{4}$Te$_{8}$,  LaMo$_{4}$S$_{8}$,  Ni(Mo$_{2}$Re$_{2}$)S$_{8}$,  Zn(Mo$_{2}$Re$_{2}$)S$_{8}$


  • This is the room temperature structure. Below 45K GaMo$_{4}$S$_{8}$ transforms into a rhombohedral structure.
  • (Ben Yaich, 1984) do not give the lattice constant for GaMo$_{4}$S$_{8}$. We infer it from their interatomic distances and obtain a value of a = 9.7294Å. The ICSD entry uses a = 9.74Å.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Ga I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) Mo I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- 3 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (16e) Mo I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}- 3 x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) Mo I
$\mathbf{B_{5}}$ = $- 3 x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (16e) Mo I
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) S I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (16e) S I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) S I
$\mathbf{B_{9}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (16e) S I
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) S II
$\mathbf{B_{11}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) S II
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) S II
$\mathbf{B_{13}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) S II

References

  • H. B. Yaich, J. C. Jegaden, M. P. R. Chevrel, M. Sergent, A. Berton, J. Chaussy, A. K. Rastogi, and R. Tournier, Nouveaux chalcogenures mixtes GaMo$_{4}$(XX′)$_{8}$ (X =S, Se, Te) à clusters tetraedriques Mo$_{4}$, J. Solid State Chem. 51, 212–217 (1984), doi:10.1016/0022-4596(84)90336-0.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=AB4C8_cF52_216_a_e_2e --params=$a,x_{2},x_{3},x_{4}$

Species:

Running:

Output: