AFLOW Prototype: AB2_cI36_204_d_g-001
This structure originally had the label AB2_cI36_204_d_g. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/XJC7
or
https://aflow.org/p/AB2_cI36_204_d_g-001
or
PDF Version
Prototype | NO$_{2}$ |
AFLOW prototype label | AB2_cI36_204_d_g-001 |
Strukturbericht designation | $C26$ |
ICSD | 201140 |
Pearson symbol | cI36 |
Space group number | 204 |
Space group symbol | $Im\overline{3}$ |
AFLOW prototype command |
aflow --proto=AB2_cI36_204_d_g-001
--params=$a, \allowbreak x_{1}, \allowbreak y_{2}, \allowbreak z_{2}$ |
making this proposed structure very unlikely.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{x}}$ | (12d) | N I |
$\mathbf{B_{2}}$ | = | $- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{x}}$ | (12d) | N I |
$\mathbf{B_{3}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{3}$ | = | $a x_{1} \,\mathbf{\hat{y}}$ | (12d) | N I |
$\mathbf{B_{4}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{3}$ | = | $- a x_{1} \,\mathbf{\hat{y}}$ | (12d) | N I |
$\mathbf{B_{5}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}$ | = | $a x_{1} \,\mathbf{\hat{z}}$ | (12d) | N I |
$\mathbf{B_{6}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}$ | = | $- a x_{1} \,\mathbf{\hat{z}}$ | (12d) | N I |
$\mathbf{B_{7}}$ | = | $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{8}}$ | = | $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{9}}$ | = | $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{10}}$ | = | $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{11}}$ | = | $y_{2} \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{12}}$ | = | $- y_{2} \, \mathbf{a}_{1}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{13}}$ | = | $y_{2} \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{14}}$ | = | $- y_{2} \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{15}}$ | = | $z_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}$ | (24g) | O I |
$\mathbf{B_{16}}$ | = | $z_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}$ | (24g) | O I |
$\mathbf{B_{17}}$ | = | $- z_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}$ | (24g) | O I |
$\mathbf{B_{18}}$ | = | $- z_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}$ | (24g) | O I |