Modern C26 (NO₂) Structure: AB2_cI36_204_d_g-001

This structure originally had the label AB2_cI36_204_d_g. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/XJC7

https://aflow.org/p/AB2_cI36_204_d_g-001

Prototype NO₂

AFLOW prototype label AB2_cI36_204_d_g-001

Strukturbericht designation C26

ICSD 201140

Pearson symbol cI36

Space group number 204

Space group symbol $Im\overline{3}$

AFLOW prototype command aflow --proto=AB2_cI36_204_d_g-001

 $\texttt{--params} \texttt{=} a, x_1, y_2, z_2$

- (Hermann, 1937) listed two possible structures for the low temperature solid cubic phase of NO_2 , which were given Strukturbericht designations $C26_a$ and $C26_b$, the only structures with Roman subscripts in the original series.
- $C26_a$ (AB2_cI36_199_b_c) was set in space group $I2_13$ #199. Hermann noted that this structure has a very short distance (1.88Å) between oxygen atoms on different NO₂ molecules, and that this structure does not form the (NO₂)₂ aggregate molecule found in the $C26_b$ structure, making "making this proposed structure very unlikely."

- Recognizing this, (Hendricks, 1931) suggested that NO₂ was actually in space group I23~#197. (Hermann, 1997) gave this structure the $C26_b$ designation, but noted that based on Hendricks's atomic positions the space group was actually $Im\bar{3}~\#204$.
- The modern accepted structure for No₂, AB2_cI36_204_d_g, is set in space group $Im\overline{3}$, confirming Hendricks. We follow (Villars, 2005) and give this the C26 designation, depreciating the $C26_b$ label.
- We used the experimental data for this phase collected at 20K.

Body-centered Cubic primitive vectors

$$\mathbf{a_1} = -\frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}a\,\hat{\mathbf{y}} + \frac{1}{2}a\,\hat{\mathbf{z}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{1}{2}a\,\hat{\mathbf{y}} + \frac{1}{2}a\,\hat{\mathbf{z}}$$

$$\mathbf{a_3} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}a\,\hat{\mathbf{y}} - \frac{1}{2}a\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	$\begin{array}{c} \text{Atom} \\ \text{type} \end{array}$
$\mathbf{B_1}$	=	$x_1 \mathbf{a}_2 + x_1 \mathbf{a}_3$	=	$ax_1 \hat{\mathbf{x}}$	(12d)	NΙ
$\mathbf{B_2}$	=	$-x_1 \mathbf{a}_2 - x_1 \mathbf{a}_3$	=	$-ax_1\mathbf{\hat{x}}$	(12d)	ΝΙ
${f B_3}$	=	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_3$	=	$ax_1\mathbf{\hat{y}}$	(12d)	ΝΙ
${f B_4}$	=	$-x_1\mathbf{a}_1-x_1\mathbf{a}_3$	=	$-ax_1\mathbf{\hat{y}}$	(12d)	NΙ
${f B_5}$	=	$x_1\mathbf{a}_1 + x_1\mathbf{a}_2$	=	$ax_1\hat{f z}$	(12d)	NΙ
${f B_6}$	=	$-x_1\mathbf{a}_1-x_1\mathbf{a}_2$	=	$-ax_1\mathbf{\hat{z}}$	(12d)	ΝΙ
$\mathbf{B_7}$	=	$(y_2+z_2) \mathbf{a}_1 + z_2 \mathbf{a}_2 + y_2 \mathbf{a}_3$	=	$ay_2\mathbf{\hat{y}} + az_2\mathbf{\hat{z}}$	(24g)	ΟI
${f B_8}$	=	$-(y_2-z_2) \mathbf{a}_1 + z_2 \mathbf{a}_2 - y_2 \mathbf{a}_3$	=	$-ay_2\mathbf{\hat{y}}+az_2\mathbf{\hat{z}}$	(24g)	ΟI
$\mathbf{B_9}$	=	$(y_2-z_2) \mathbf{a}_1 - z_2 \mathbf{a}_2 + y_2 \mathbf{a}_3$	=	$ay_2\hat{\mathbf{y}}-az_2\hat{\mathbf{z}}$	(24g)	ΟI
$\mathbf{B_{10}}$	=	$-(y_2+z_2) \mathbf{a}_1 - z_2 \mathbf{a}_2 - y_2 \mathbf{a}_3$	=	$-ay_2\mathbf{\hat{y}}-az_2\mathbf{\hat{z}}$	(24g)	ΟI
B_{11}	=	$y_2 \mathbf{a}_1 + (y_2 + z_2) \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$az_2\hat{\mathbf{x}} + ay_2\hat{\mathbf{z}}$	(24g)	ΟI
$\mathbf{B_{12}}$	=	$-y_2 \mathbf{a}_1 - (y_2 - z_2) \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$az_2\hat{\mathbf{x}} - ay_2\hat{\mathbf{z}}$	(24g)	ΟI
${\bf B_{13}}$	=	$y_2 \mathbf{a}_1 + (y_2 - z_2) \mathbf{a}_2 - z_2 \mathbf{a}_3$	=	$-az_2\mathbf{\hat{x}} + ay_2\mathbf{\hat{z}}$	(24g)	ΟI
$\mathbf{B_{14}}$	=	$-y_2 \mathbf{a}_1 - (y_2 + z_2) \mathbf{a}_2 - z_2 \mathbf{a}_3$	=	$-az_2\mathbf{\hat{x}}-ay_2\mathbf{\hat{z}}$	(24g)	ΟI
${ m B_{15}}$	=	$z_2 \mathbf{a}_1 + y_2 \mathbf{a}_2 + (y_2 + z_2) \mathbf{a}_3$	=	$ay_2\mathbf{\hat{x}} + az_2\mathbf{\hat{y}}$	(24g)	ΟI
${f B_{16}}$	=	$z_2 \mathbf{a}_1 - y_2 \mathbf{a}_2 - (y_2 - z_2) \mathbf{a}_3$	=	$-ay_2\mathbf{\hat{x}} + az_2\mathbf{\hat{y}}$	(24g)	ΟI
B_{17}	=	$-z_2 \mathbf{a}_1 + y_2 \mathbf{a}_2 + (y_2 - z_2) \mathbf{a}_3$	=	$ay_2\mathbf{\hat{x}}-az_2\mathbf{\hat{y}}$	(24g)	ΟI
B_{18}	=	$-z_2 \mathbf{a}_1 - y_2 \mathbf{a}_2 - (y_2 + z_2) \mathbf{a}_3$	=	$-ay_2\mathbf{\hat{x}}-az_2\mathbf{\hat{y}}$	(24g)	ΟI

References

[1] A. Kvick, R. K. McMullan, and M. D. Newton, The structure of dinitrogen tetroxide N₂O₄: Neutron diffraction study at 100, 60 and 20 K and ab initio theoretical calculations, J. Chem. Phys. **76**, 3754–3761 (1982), doi:10.1063/1.443414.

- [2] C. Hermann, O. Lohrmann, and H. Philipp, eds., *Strukturbericht Band II 1928-1932* (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
- [3] S. B. Hendricks, *Die Kristallstruktur von N_2O_4*, Z. Physik **70**, 699–700 (1931), doi:10.1007/BF01340758.

Found in

[1] P. Villars and K. Cenzual, eds., Crystal Structure Data of Inorganic Compounds (Springer-Verlag, Berlin, Heidelberg, 2005). Landolt-Bornstein Volume III 43A2.