Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C3_cP24_212_a_c_d-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/K791
or https://aflow.org/p/AB2C3_cP24_212_a_c_d-001
or PDF Version

Li$_{2}$Pd$_{3}$B Structure: AB2C3_cP24_212_a_c_d-001

Picture of Structure; Click for Big Picture
Prototype BLi$_{2}$Pt$_{3}$
AFLOW prototype label AB2C3_cP24_212_a_c_d-001
ICSD 84931
Pearson symbol cP24
Space group number 212
Space group symbol $P4_332$
AFLOW prototype command aflow --proto=AB2C3_cP24_212_a_c_d-001
--params=$a, \allowbreak x_{2}, \allowbreak y_{3}$

Other compounds with this structure

Li$_{2}$Pt$_{3}$B


  • This structure can also be expressed in the enantiomorphic space group $P4_{1}32$ #213.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (4a) B I
$\mathbf{B_{2}}$ = $\frac{3}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (4a) B I
$\mathbf{B_{3}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (4a) B I
$\mathbf{B_{4}}$ = $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (4a) B I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8c) Li I
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Li I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Li I
$\mathbf{B_{8}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8c) Li I
$\mathbf{B_{9}}$ = $\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Li I
$\mathbf{B_{10}}$ = $- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Li I
$\mathbf{B_{11}}$ = $\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Li I
$\mathbf{B_{12}}$ = $- \left(x_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Li I
$\mathbf{B_{13}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{14}}$ = $\frac{3}{8} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{15}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{16}}$ = $\frac{5}{8} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{17}}$ = $- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{18}}$ = $- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{19}}$ = $\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{20}}$ = $\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{21}}$ = $y_{3} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{22}}$ = $- y_{3} \, \mathbf{a}_{1}- \left(y_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{23}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (12d) Pd I
$\mathbf{B_{24}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (12d) Pd I

References

  • U. Eibenstein and W. Jung, Li$_{2}$Pd$_{3}$B and Li$_{2}$Pt$_{3}$B: Ternary Lithium Borides of Palladium and Platinum with Boron in Octahedral Coordination, J. Solid State Chem. 133, 21–24 (1997), doi:10.1006/jssc.1997.7310.

Found in

  • K. Togano, P. Badica, Y. Nakamori, S. Orimo, H. Takeya, and K. Hirata, Superconductivity in the Metal Rich Li-Pd-B Ternary Boride, Phys. Rev. Lett. 93, 247004 (2004), doi:10.1103/PhysRevLett.93.247004.

Prototype Generator

aflow --proto=AB2C3_cP24_212_a_c_d --params=$a,x_{2},y_{3}$

Species:

Running:

Output: