AFLOW Prototype: A8B3C_cI96_206_ce_d_a-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/3HHF
or
https://aflow.org/p/A8B3C_cI96_206_ce_d_a-001
or
PDF Version
Prototype | O$_{8}$Te$_{3}$Zr |
AFLOW prototype label | A8B3C_cI96_206_ce_d_a-001 |
ICSD | 409713 |
Pearson symbol | cI96 |
Space group number | 206 |
Space group symbol | $Ia\overline{3}$ |
AFLOW prototype command |
aflow --proto=A8B3C_cI96_206_ce_d_a-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (8a) | Zr I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (8a) | Zr I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (8a) | Zr I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{z}}$ | (8a) | Zr I |
$\mathbf{B_{5}}$ | = | $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (16c) | O I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (16c) | O I |
$\mathbf{B_{7}}$ | = | $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (16c) | O I |
$\mathbf{B_{8}}$ | = | $- \left(2 x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16c) | O I |
$\mathbf{B_{9}}$ | = | $- 2 x_{2} \, \mathbf{a}_{1}- 2 x_{2} \, \mathbf{a}_{2}- 2 x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (16c) | O I |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\left(2 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (16c) | O I |
$\mathbf{B_{11}}$ | = | $\left(2 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (16c) | O I |
$\mathbf{B_{12}}$ | = | $\left(2 x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (16c) | O I |
$\mathbf{B_{13}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24d) | Te I |
$\mathbf{B_{14}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24d) | Te I |
$\mathbf{B_{15}}$ | = | $x_{3} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ | (24d) | Te I |
$\mathbf{B_{16}}$ | = | $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (24d) | Te I |
$\mathbf{B_{17}}$ | = | $\left(x_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (24d) | Te I |
$\mathbf{B_{18}}$ | = | $- \left(x_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (24d) | Te I |
$\mathbf{B_{19}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (24d) | Te I |
$\mathbf{B_{20}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24d) | Te I |
$\mathbf{B_{21}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ | (24d) | Te I |
$\mathbf{B_{22}}$ | = | $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}$ | (24d) | Te I |
$\mathbf{B_{23}}$ | = | $- \left(x_{3} - \frac{3}{4}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (24d) | Te I |
$\mathbf{B_{24}}$ | = | $\left(x_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24d) | Te I |
$\mathbf{B_{25}}$ | = | $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{26}}$ | = | $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{27}}$ | = | $\left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{28}}$ | = | $- \left(y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{29}}$ | = | $\left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{30}}$ | = | $- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{31}}$ | = | $\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a z_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{32}}$ | = | $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{33}}$ | = | $\left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{34}}$ | = | $- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{35}}$ | = | $- \left(x_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{36}}$ | = | $\left(x_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} + z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{37}}$ | = | $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{38}}$ | = | $\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{39}}$ | = | $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{40}}$ | = | $\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{41}}$ | = | $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{42}}$ | = | $\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{43}}$ | = | $\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a z_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{44}}$ | = | $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a y_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{45}}$ | = | $- \left(x_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{46}}$ | = | $\left(x_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} - z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{47}}$ | = | $\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (48e) | O II |
$\mathbf{B_{48}}$ | = | $\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (48e) | O II |