Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A8B24C_cP33_221_g_efh_a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/CLMU
or https://aflow.org/p/A8B24C_cP33_221_g_efh_a-001
or PDF Version

Ce$_{8}$Pd$_{24}$Sb Structure: A8B24C_cP33_221_g_efh_a-001

Picture of Structure; Click for Big Picture
Prototype Ce$_{8}$Pd$_{24}$Sb
AFLOW prototype label A8B24C_cP33_221_g_efh_a-001
ICSD 83378
Pearson symbol cP33
Space group number 221
Space group symbol $Pm\overline{3}m$
AFLOW prototype command aflow --proto=A8B24C_cP33_221_g_efh_a-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Sb I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}$ = $a x_{2} \,\mathbf{\hat{x}}$ (6e) Pd I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (6e) Pd I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{y}}$ (6e) Pd I
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{y}}$ (6e) Pd I
$\mathbf{B_{6}}$ = $x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{z}}$ (6e) Pd I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{z}}$ (6e) Pd I
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Pd II
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Pd II
$\mathbf{B_{10}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Pd II
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6f) Pd II
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (6f) Pd II
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (6f) Pd II
$\mathbf{B_{14}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (8g) Ce I
$\mathbf{B_{15}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (8g) Ce I
$\mathbf{B_{16}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (8g) Ce I
$\mathbf{B_{17}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (8g) Ce I
$\mathbf{B_{18}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (8g) Ce I
$\mathbf{B_{19}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (8g) Ce I
$\mathbf{B_{20}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (8g) Ce I
$\mathbf{B_{21}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (8g) Ce I
$\mathbf{B_{22}}$ = $x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (12h) Pd III
$\mathbf{B_{23}}$ = $- x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (12h) Pd III
$\mathbf{B_{24}}$ = $x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12h) Pd III
$\mathbf{B_{25}}$ = $- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12h) Pd III
$\mathbf{B_{26}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{z}}$ (12h) Pd III
$\mathbf{B_{27}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{z}}$ (12h) Pd III
$\mathbf{B_{28}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ (12h) Pd III
$\mathbf{B_{29}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}$ (12h) Pd III
$\mathbf{B_{30}}$ = $x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12h) Pd III
$\mathbf{B_{31}}$ = $- x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12h) Pd III
$\mathbf{B_{32}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (12h) Pd III
$\mathbf{B_{33}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (12h) Pd III

References

  • R. A. Gordon and F. J. DiSalvo, Crystal Structure and Magnetic Susceptibility of Ce$_{8}$Pd$_{24}$Sb, Z. Naturforsch. B 51, 52–56 (1996), doi:10.1515/znb-1996-0112.

Prototype Generator

aflow --proto=A8B24C_cP33_221_g_efh_a --params=$a,x_{2},x_{3},x_{4},x_{5}$

Species:

Running:

Output: