AFLOW Prototype: A8B24C_cP33_221_g_efh_a-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/CLMU
or
https://aflow.org/p/A8B24C_cP33_221_g_efh_a-001
or
PDF Version
Prototype | Ce$_{8}$Pd$_{24}$Sb |
AFLOW prototype label | A8B24C_cP33_221_g_efh_a-001 |
ICSD | 83378 |
Pearson symbol | cP33 |
Space group number | 221 |
Space group symbol | $Pm\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A8B24C_cP33_221_g_efh_a-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Sb I |
$\mathbf{B_{2}}$ | = | $x_{2} \, \mathbf{a}_{1}$ | = | $a x_{2} \,\mathbf{\hat{x}}$ | (6e) | Pd I |
$\mathbf{B_{3}}$ | = | $- x_{2} \, \mathbf{a}_{1}$ | = | $- a x_{2} \,\mathbf{\hat{x}}$ | (6e) | Pd I |
$\mathbf{B_{4}}$ | = | $x_{2} \, \mathbf{a}_{2}$ | = | $a x_{2} \,\mathbf{\hat{y}}$ | (6e) | Pd I |
$\mathbf{B_{5}}$ | = | $- x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{y}}$ | (6e) | Pd I |
$\mathbf{B_{6}}$ | = | $x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{z}}$ | (6e) | Pd I |
$\mathbf{B_{7}}$ | = | $- x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{z}}$ | (6e) | Pd I |
$\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6f) | Pd II |
$\mathbf{B_{9}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6f) | Pd II |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6f) | Pd II |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6f) | Pd II |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ | (6f) | Pd II |
$\mathbf{B_{13}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ | (6f) | Pd II |
$\mathbf{B_{14}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (8g) | Ce I |
$\mathbf{B_{15}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (8g) | Ce I |
$\mathbf{B_{16}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (8g) | Ce I |
$\mathbf{B_{17}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (8g) | Ce I |
$\mathbf{B_{18}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (8g) | Ce I |
$\mathbf{B_{19}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (8g) | Ce I |
$\mathbf{B_{20}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (8g) | Ce I |
$\mathbf{B_{21}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (8g) | Ce I |
$\mathbf{B_{22}}$ | = | $x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (12h) | Pd III |
$\mathbf{B_{23}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (12h) | Pd III |
$\mathbf{B_{24}}$ | = | $x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12h) | Pd III |
$\mathbf{B_{25}}$ | = | $- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12h) | Pd III |
$\mathbf{B_{26}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{z}}$ | (12h) | Pd III |
$\mathbf{B_{27}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{z}}$ | (12h) | Pd III |
$\mathbf{B_{28}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ | (12h) | Pd III |
$\mathbf{B_{29}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}$ | (12h) | Pd III |
$\mathbf{B_{30}}$ | = | $x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12h) | Pd III |
$\mathbf{B_{31}}$ | = | $- x_{5} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12h) | Pd III |
$\mathbf{B_{32}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (12h) | Pd III |
$\mathbf{B_{33}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (12h) | Pd III |