Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A7B_cF256_225_f2k_ce-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/EMLR
or https://aflow.org/p/A7B_cF256_225_f2k_ce-001
or PDF Version

Intermediate Temperature Bornite (Cu$_{5/6}$Fe$_{1/6}$)$_{3}$S$_{2}$ Structure: A7B_cF256_225_f2k_ce-001

Picture of Structure; Click for Big Picture
Prototype Cu$_{5}$FeS$_{4}$
AFLOW prototype label A7B_cF256_225_f2k_ce-001
Mineral name bornite
ICSD 200424
Pearson symbol cF256
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=A7B_cF256_225_f2k_ce-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}$

  • Bornite can take on several forms at different temperatures (Martinelli, 2018).
  • In all of these cases the sulfur atoms form a face-centered or nearly face-centered cubic lattice.
  • Data for this structure was taken at 458K. There is considerable disorder here. The site we labeled Cu-II is occupied 33% of the time with a mixture of copper and iron atoms. The Cu-I and Cu-III sites are occupied 31% and 7% of the time, respectively, and are purely copper. The sulfur atoms form a nearly cubic fcc lattice, with one of the tetrahedral sites is occupied by a copper or iron atom, and the other site is either filled by a copper atom or remains vacant. (Kanazawa, 1978)

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}$ (24e) S II
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (24e) S II
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{y}}$ (24e) S II
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{y}}$ (24e) S II
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{z}}$ (24e) S II
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{z}}$ (24e) S II
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- 3 x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{11}}$ = $x_{3} \, \mathbf{a}_{1}- 3 x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{12}}$ = $- 3 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+3 x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{14}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{15}}$ = $- x_{3} \, \mathbf{a}_{1}+3 x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{16}}$ = $3 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (32f) Cu I
$\mathbf{B_{17}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{18}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{19}}$ = $\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{20}}$ = $- \left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{21}}$ = $\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{22}}$ = $- \left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{23}}$ = $z_{4} \, \mathbf{a}_{1}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{24}}$ = $z_{4} \, \mathbf{a}_{1}- \left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{25}}$ = $z_{4} \, \mathbf{a}_{1}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{26}}$ = $z_{4} \, \mathbf{a}_{1}- \left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{27}}$ = $- \left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{28}}$ = $\left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- \left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{29}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{30}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{31}}$ = $- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}+\left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{32}}$ = $\left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{1}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{33}}$ = $- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+\left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{34}}$ = $\left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{35}}$ = $- z_{4} \, \mathbf{a}_{1}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{36}}$ = $- z_{4} \, \mathbf{a}_{1}+\left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{37}}$ = $- z_{4} \, \mathbf{a}_{1}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{38}}$ = $- z_{4} \, \mathbf{a}_{1}+\left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{39}}$ = $\left(2 x_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{40}}$ = $- \left(2 x_{4} - z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (96k) Cu II
$\mathbf{B_{41}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{42}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{43}}$ = $\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{44}}$ = $- \left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{45}}$ = $\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{46}}$ = $- \left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{47}}$ = $z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{48}}$ = $z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{49}}$ = $z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{50}}$ = $z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{51}}$ = $- \left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{52}}$ = $\left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{53}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{54}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{55}}$ = $- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}+\left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{56}}$ = $\left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{1}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{57}}$ = $- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+\left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{58}}$ = $\left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{59}}$ = $- z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{60}}$ = $- z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{61}}$ = $- z_{5} \, \mathbf{a}_{1}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{2}+\left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{62}}$ = $- z_{5} \, \mathbf{a}_{1}+\left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{63}}$ = $\left(2 x_{5} + z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III
$\mathbf{B_{64}}$ = $- \left(2 x_{5} - z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (96k) Cu III

References

  • Y. Kanazawa, K. Koto, and N. Morimoto, Bornite (Cu$_{5}$FeS$_{4}$); stability and crystal structure of the intermediate form, Can. Mineral. 16, 397–404 (1978).

Found in

  • A. Martinelli, G. O. Lepore, F. Bernardini, A. Giaccherini, and F. D. Benedetto, The puzzling structure of Cu$_{5}$FeS$_{4}$ (bornite) at low temperature, Acta Crystallogr. Sect. B 74, 405–415 (2018), doi:10.1107/S2052520618009812.

Prototype Generator

aflow --proto=A7B_cF256_225_f2k_ce --params=$a,x_{2},x_{3},x_{4},z_{4},x_{5},z_{5}$

Species:

Running:

Output: