AFLOW Prototype: A6B6C_cF104_202_h_h_c-001
This structure originally had the label A6B6C_cF104_202_h_h_c. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/PZB0
or
https://aflow.org/p/A6B6C_cF104_202_h_h_c-001
or
PDF Version
Prototype | B$_{6}$H$_{6}$K |
AFLOW prototype label | A6B6C_cF104_202_h_h_c-001 |
ICSD | 36148 |
Pearson symbol | cF104 |
Space group number | 202 |
Space group symbol | $Fm\overline{3}$ |
AFLOW prototype command |
aflow --proto=A6B6C_cF104_202_h_h_c-001
--params=$a, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak y_{3}, \allowbreak z_{3}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | K I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (8c) | K I |
$\mathbf{B_{3}}$ | = | $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ | (48h) | B I |
$\mathbf{B_{4}}$ | = | $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ | (48h) | B I |
$\mathbf{B_{5}}$ | = | $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ | (48h) | B I |
$\mathbf{B_{6}}$ | = | $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ | (48h) | B I |
$\mathbf{B_{7}}$ | = | $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ | (48h) | B I |
$\mathbf{B_{8}}$ | = | $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ | (48h) | B I |
$\mathbf{B_{9}}$ | = | $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a z_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{z}}$ | (48h) | B I |
$\mathbf{B_{10}}$ | = | $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a z_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{z}}$ | (48h) | B I |
$\mathbf{B_{11}}$ | = | $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}$ | (48h) | B I |
$\mathbf{B_{12}}$ | = | $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}$ | (48h) | B I |
$\mathbf{B_{13}}$ | = | $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ | = | $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}$ | (48h) | B I |
$\mathbf{B_{14}}$ | = | $\left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ | = | $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}$ | (48h) | B I |
$\mathbf{B_{15}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (48h) | H I |
$\mathbf{B_{16}}$ | = | $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (48h) | H I |
$\mathbf{B_{17}}$ | = | $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (48h) | H I |
$\mathbf{B_{18}}$ | = | $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (48h) | H I |
$\mathbf{B_{19}}$ | = | $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ | (48h) | H I |
$\mathbf{B_{20}}$ | = | $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ | (48h) | H I |
$\mathbf{B_{21}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ | (48h) | H I |
$\mathbf{B_{22}}$ | = | $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ | (48h) | H I |
$\mathbf{B_{23}}$ | = | $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ | (48h) | H I |
$\mathbf{B_{24}}$ | = | $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ | (48h) | H I |
$\mathbf{B_{25}}$ | = | $- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ | (48h) | H I |
$\mathbf{B_{26}}$ | = | $\left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ | (48h) | H I |