Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B9_cP52_215_ei_3efgi-001

This structure originally had the label A4B9_cP52_215_ei_3efgi. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/TRNX
or https://aflow.org/p/A4B9_cP52_215_ei_3efgi-001
or PDF Version

γ-brass (Cu$_{9}$Al$_{4}$, $D8_{3}$) Structure: A4B9_cP52_215_ei_3efgi-001

Picture of Structure; Click for Big Picture
Prototype Al$_{4}$Cu$_{9}$
AFLOW prototype label A4B9_cP52_215_ei_3efgi-001
Strukturbericht designation $D8_{3}$
Mineral name γ-brass
ICSD 1625
Pearson symbol cP52
Space group number 215
Space group symbol $P\overline{4}3m$
AFLOW prototype command aflow --proto=A4B9_cP52_215_ei_3efgi-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}$

Other compounds with this structure

Cu$_{9}$Ga$_{4}$,  InMn$_{3}$


  • (Arnberg, 1978) give the Wyckoff positions of the Cu-IV and Cu-V atoms as (6g) $(x,1/2,1/2)$, but give the coordinates in the form $(x,0,0)$ corresponding to the (6f) site.
  • (Stokhuyzen, 1974) used (6f) for both types of atoms in the isostructural system Ga$_{9}$Al$_{4}$.
  • (Pearson, 1958) places the Cu-IV atoms on a (6f) site and Cu-V on (6g), but does not give explicit coordinates.
  • Placing the Cu-V atoms on (6f) sites yields an interatomic distance of 1.8Å. This contradicts (Arnberg, 1978), who say that the minimum interatomic distance between the Cu-IV and Cu-V atoms is 2.48Å . Placing the Cu-V atoms on (6g) sites gives this distance, in agreement with (Pearson, 1958), so we make this choice for the crystal structure.
  • This is a variety of $\gamma$-brass comparable to the $D8_{2}$ structure. In fact, if we
    • Replace the Al and Cu-III atoms by Zn, while setting $x_{4}=x_{1}+1/2$,
    • Replace the Al II and Cu-VI atoms by Zn, with $x_{8} = x_{7} + 1/2$ and $z_{8} = z_{7} + 1/2$,
    • Set $x_{3} = x_{2} + 1/2$ and
    • Set $x_{6} = x_{5} + 1/2$,
    then this structure is identical to $D8_{2} \gamma$-brass.
  • (Pearson, 1958), 252, gives a list of compounds which can take on the $D8_{1}$, $D8_{2}$, or $D8_{3}$ structure, depending on the exact composition.
  • (Mizutani, 2010) classifies this as a P-cell $\gamma$-brass.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (4e) Al I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (4e) Al I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (4e) Al I
$\mathbf{B_{4}}$ = $x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (4e) Al I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (4e) Cu I
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (4e) Cu I
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (4e) Cu I
$\mathbf{B_{8}}$ = $x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (4e) Cu I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (4e) Cu II
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (4e) Cu II
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (4e) Cu II
$\mathbf{B_{12}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (4e) Cu II
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (4e) Cu III
$\mathbf{B_{14}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (4e) Cu III
$\mathbf{B_{15}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (4e) Cu III
$\mathbf{B_{16}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (4e) Cu III
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}$ = $a x_{5} \,\mathbf{\hat{x}}$ (6f) Cu IV
$\mathbf{B_{18}}$ = $- x_{5} \, \mathbf{a}_{1}$ = $- a x_{5} \,\mathbf{\hat{x}}$ (6f) Cu IV
$\mathbf{B_{19}}$ = $x_{5} \, \mathbf{a}_{2}$ = $a x_{5} \,\mathbf{\hat{y}}$ (6f) Cu IV
$\mathbf{B_{20}}$ = $- x_{5} \, \mathbf{a}_{2}$ = $- a x_{5} \,\mathbf{\hat{y}}$ (6f) Cu IV
$\mathbf{B_{21}}$ = $x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{z}}$ (6f) Cu IV
$\mathbf{B_{22}}$ = $- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{z}}$ (6f) Cu IV
$\mathbf{B_{23}}$ = $x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6g) Cu V
$\mathbf{B_{24}}$ = $- x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6g) Cu V
$\mathbf{B_{25}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6g) Cu V
$\mathbf{B_{26}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6g) Cu V
$\mathbf{B_{27}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (6g) Cu V
$\mathbf{B_{28}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (6g) Cu V
$\mathbf{B_{29}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{30}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{31}}$ = $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{32}}$ = $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{33}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{34}}$ = $z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{35}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{36}}$ = $- z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{37}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{38}}$ = $- x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{39}}$ = $x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{40}}$ = $- x_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (12i) Al II
$\mathbf{B_{41}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{42}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{43}}$ = $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{44}}$ = $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{45}}$ = $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{46}}$ = $z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{47}}$ = $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{48}}$ = $- z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{49}}$ = $x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{50}}$ = $- x_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{51}}$ = $x_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI
$\mathbf{B_{52}}$ = $- x_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (12i) Cu VI

References

  • L. Arnberg and S. Westman, Crystal perfection in a noncentrosymmetric alloy. Refinement and test of twinning of the γCu$_{9}$Al$_{4}$ structure 34, 399–404 (1978), doi:10.1107/S0567739478000807.
  • R. Stokhuyzen, J. K. Brandon, P. C. Chieh, and W. B. Pearson, Copper-Gallium, $\gamma_1$Cu$_{9}$Ga$_{4}$ 30, 2910–2911 (1974), doi:10.1107/S0567740874008478.
  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys}, no. N.R.C. No. 4303 in International Series of Monographs on Metal Physics and Physical Metallurgy (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfort, 1958), 1964 reprint with corrections edn.
  • \bibitem{Mizutani_Hume-Rothery_2010U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases} (CRC Press, Boca Raton, London, New York, 2010).\bibAnnoteFile{Mizutani_Hume-Rothery_2010

Found in

  • P. Villars and K. Cenuzal, eds., Structure Types (Springer, Berlin, Heidelberg, 2005), Landolt-Börnstein - Group III Condensed Matter (Numerical Data and Functional Relationships in Science and Technology)}, vol. 43A2, chap. Cu$_{9}Al$_{4 in Part 2: Space Groups (218) P-43n - (195) P23.

Prototype Generator

aflow --proto=A4B9_cP52_215_ei_3efgi --params=$a,x_{1},x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},z_{7},x_{8},z_{8}$

Species:

Running:

Output: