Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B13C3_cP40_223_e_ak_c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/GYST
or https://aflow.org/p/A4B13C3_cP40_223_e_ak_c-001
or PDF Version

Yb$_{3}$Rh$_{4}$Sn$_{13}$ Structure: A4B13C3_cP40_223_e_ak_c-001

Picture of Structure; Click for Big Picture
Prototype Rh$_{4}$Sn$_{13}$Yb$_{3}$
AFLOW prototype label A4B13C3_cP40_223_e_ak_c-001
ICSD 105936
Pearson symbol cP40
Space group number 223
Space group symbol $Pm\overline{3}n$
AFLOW prototype command aflow --proto=A4B13C3_cP40_223_e_ak_c-001
--params=$a, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

Ca$_{3}$Co$_{4}$Ge$_{13}$,  Ca$_{3}$Ir$_{4}$Ge$_{13}$,  Ca$_{3}$Os$_{4}$Ge$_{13}$,  Ca$_{3}$Rh$_{4}$Ge$_{13}$,  Ca$_{3}$Ru$_{4}$Ge$_{13}$,  Ce$_{3}$Rh$_{4}$Sn$_{13}$,  Gd$_{3}$Co$_{4}$Ge$_{13}$,  Gd$_{3}$Ir$_{4}$Ge$_{13}$,  Gd$_{3}$Os$_{4}$Ge$_{13}$,  Gd$_{3}$Rh$_{4}$Ge$_{13}$,  Gd$_{3}$Ru$_{4}$Ge$_{13}$,  La$_{3}$Rh$_{4}$Sn$_{13}$,  Pr$_{3}$Rh$_{4}$Sn$_{13}$,  Sn$_{3}$Rh$_{4}$Sn$_{13}$,  U$_{3}$Co$_{4}$Ge$_{13}$,  U$_{3}$Ir$_{4}$Ge$_{13}$,  U$_{3}$Os$_{4}$Ge$_{13}$,  U$_{3}$Rh$_{4}$Ge$_{13}$,  U$_{3}$Ru$_{4}$Ge$_{13}$,  Y$_{3}$Co$_{4}$Ge$_{13}$,  Y$_{3}$Ir$_{4}$Ge$_{13}$,  Y$_{3}$Os$_{4}$Ge$_{13}$,  Y$_{3}$Rh$_{4}$Ge$_{13}$,  Y$_{3}$Ru$_{4}$Ge$_{13}$,  Yb$_{3}$Co$_{4}$Ge$_{13}$,  Yb$_{3}$Ir$_{4}$Ge$_{13}$,  Yb$_{3}$Os$_{4}$Ge$_{13}$,  Yb$_{3}$Rh$_{4}$Ge$_{13}$,  Yb$_{3}$Ru$_{4}$Ge$_{13}$


  • (Bordet, 1991) refers to this as phase $I$ of structures with the formula M$_{3}$Rh$_{4}$Sn$_{13}$, with the phase $I'$ structure represented by the non-centrosymmetric La$_{3}$Rh$_{4}$Sn$_{13}$ phase.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Sn I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (2a) Sn I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) Yb I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) Yb I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (6c) Yb I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (6c) Yb I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (6c) Yb I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (6c) Yb I
$\mathbf{B_{9}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8e) Rh I
$\mathbf{B_{10}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8e) Rh I
$\mathbf{B_{11}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8e) Rh I
$\mathbf{B_{12}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8e) Rh I
$\mathbf{B_{13}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8e) Rh I
$\mathbf{B_{14}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8e) Rh I
$\mathbf{B_{15}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8e) Rh I
$\mathbf{B_{16}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8e) Rh I
$\mathbf{B_{17}}$ = $y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{18}}$ = $- y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{19}}$ = $y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{20}}$ = $- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{21}}$ = $z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{22}}$ = $z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{23}}$ = $- z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{24}}$ = $- z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{25}}$ = $y_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ (24k) Sn II
$\mathbf{B_{26}}$ = $- y_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ (24k) Sn II
$\mathbf{B_{27}}$ = $y_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ (24k) Sn II
$\mathbf{B_{28}}$ = $- y_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ (24k) Sn II
$\mathbf{B_{29}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{30}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{31}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{32}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{33}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{34}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{35}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{36}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{37}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{38}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{39}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Sn II
$\mathbf{B_{40}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) Sn II

References

  • J. L. Hodeau, J. Chenavas, and M. Marezio, The crystal structure of SnYb$_{3}$Rh$_{4}$Sn$_{12}$, a new ternary superconducting stannide, Solid State Commun. 36, 839–845 (1980), doi:10.1016/0038-1098(80)90125-8.
  • P. Bordet, D. E. Cox, G. P. Espinosa, J. L. Hodeau, and M. Marezio, Synchrotron X-ray powder diffraction study of the phase I' compound: SnLa$_{3}$Rh$_{4}$Sn$_{12}$, Solid State Commun. 78, 359–366 (1991), doi:10.1016/0038-1098(91)90684-N.

Found in

  • R. Gumeniuk, M. Schöneich, K. O. Kvashnina, L. Akselrud, A. A. Tsirlin, M. Nicklas, W. Schnelle, O. Janson, Q. Zheng, C. Curfs, U. Burkhardt, U. Schwarz, and A. Leithe-Jasper, Intermetallic germanides with non-centrosymmetric structures derived from the Yb$_{3}$Rh$_{4}$Sn$_{13}$ type, Dalton Trans. 44, 5638–5651 (2015), doi:10.1039/C4DT03155E.

Prototype Generator

aflow --proto=A4B13C3_cP40_223_e_ak_c --params=$a,y_{4},z_{4}$

Species:

Running:

Output: