Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_cP32_223_k_ac-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/4UMV
or https://aflow.org/p/A3B_cP32_223_k_ac-001
or PDF Version

β-UH$_{3}$ Structure: A3B_cP32_223_k_ac-001

Picture of Structure; Click for Big Picture
Prototype H$_{3}$U
AFLOW prototype label A3B_cP32_223_k_ac-001
ICSD none
Pearson symbol cP32
Space group number 223
Space group symbol $Pm\overline{3}n$
AFLOW prototype command aflow --proto=A3B_cP32_223_k_ac-001
--params=$a, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

Zn$_{3}$Au


  • UH$_{3}$ exists in two different structures, both with space group $Pm\overline{3}n$ #223 (Halevy, 2004).
  • $\alpha$–UH$_{3}$ forms in the Cr$_{3}$Si ($A15$) structure, but rapidly transforms into the ground state $\beta$–UH$_{3}$ structure shown here.
  • In this case, all of the uranium atoms sit on the sites of the $A15$ structure, with the hydrogens in the interstitials.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) U I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (2a) U I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) U II
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) U II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (6c) U II
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (6c) U II
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (6c) U II
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (6c) U II
$\mathbf{B_{9}}$ = $y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{10}}$ = $- y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{11}}$ = $y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{12}}$ = $- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{13}}$ = $z_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{14}}$ = $z_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{15}}$ = $- z_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{16}}$ = $- z_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{17}}$ = $y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ (24k) H I
$\mathbf{B_{18}}$ = $- y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ (24k) H I
$\mathbf{B_{19}}$ = $y_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ = $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ (24k) H I
$\mathbf{B_{20}}$ = $- y_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ = $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ (24k) H I
$\mathbf{B_{21}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{22}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{23}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{24}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{25}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{26}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{27}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{28}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{29}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{30}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{31}}$ = $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) H I
$\mathbf{B_{32}}$ = $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (24k) H I

References

  • I. Halevy, S. Salhov, S. Zalkind, M. Brill, and I. Yaar, High pressure study of β-UH$_{3}$ crystallographic and electronic structure, J. Alloys Compd. 370, 59–64 (2004), doi:10.1016/j.jallcom.2003.09.124.

Prototype Generator

aflow --proto=A3B_cP32_223_k_ac --params=$a,y_{3},z_{3}$

Species:

Running:

Output: