AFLOW Prototype: A3B_cP32_223_k_ac-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/4UMV
or
https://aflow.org/p/A3B_cP32_223_k_ac-001
or
PDF Version
Prototype | H$_{3}$U |
AFLOW prototype label | A3B_cP32_223_k_ac-001 |
ICSD | none |
Pearson symbol | cP32 |
Space group number | 223 |
Space group symbol | $Pm\overline{3}n$ |
AFLOW prototype command |
aflow --proto=A3B_cP32_223_k_ac-001
--params=$a, \allowbreak y_{3}, \allowbreak z_{3}$ |
Zn$_{3}$Au
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | U I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (2a) | U I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6c) | U II |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6c) | U II |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (6c) | U II |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ | (6c) | U II |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (6c) | U II |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (6c) | U II |
$\mathbf{B_{9}}$ | = | $y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{10}}$ | = | $- y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{11}}$ | = | $y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{12}}$ | = | $- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{13}}$ | = | $z_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{14}}$ | = | $z_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{3}$ | = | $a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{15}}$ | = | $- z_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{16}}$ | = | $- z_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{3}$ | = | $- a z_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{17}}$ | = | $y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ | = | $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ | (24k) | H I |
$\mathbf{B_{18}}$ | = | $- y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ | = | $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}$ | (24k) | H I |
$\mathbf{B_{19}}$ | = | $y_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ | = | $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ | (24k) | H I |
$\mathbf{B_{20}}$ | = | $- y_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ | = | $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}$ | (24k) | H I |
$\mathbf{B_{21}}$ | = | $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{22}}$ | = | $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{23}}$ | = | $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{24}}$ | = | $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{25}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{26}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{27}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{28}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{29}}$ | = | $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{30}}$ | = | $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{31}}$ | = | $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (24k) | H I |
$\mathbf{B_{32}}$ | = | $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (24k) | H I |